scholarly journals Acute Effects of Using Added Respiratory Dead Space Volume in a Cycling Sprint Interval Exercise Protocol: A Cross-Over Study

Author(s):  
Natalia Danek ◽  
Kamil Michalik ◽  
Marcin Smolarek ◽  
Marek Zatoń

Background: The aim of the study was to compare acute physiological, biochemical, and perceptual responses during sprint interval exercise (SIE) with breathing through a device increasing added respiratory dead space volume (ARDSV) and without the device. Methods: The study involved 11 healthy, physically active men (mean maximal oxygen uptake: 52.6 ± 8.2 mL∙kg1∙min−1). During four visits to a laboratory with a minimum interval of 72 h, they participated in (1) an incremental test on a cycle ergometer; (2) a familiarization session; (3) and (4) cross-over SIE sessions. SIE consisted of 6 × 10-s all-out bouts with 4-min active recovery. During one of the sessions the participants breathed through a 1200-mL ARDSv (SIEARDS). Results: The work performed was significantly higher by 4.4% during SIEARDS, with no differences in the fatigue index. The mean respiratory ventilation was significantly higher by 13.2%, and the mean oxygen uptake was higher by 31.3% during SIEARDS. Respiratory muscle strength did not change after the two SIE sessions. In SIEARDS, the mean pH turned out significantly lower (7.26 vs. 7.29), and the mean HCO3– concentration was higher by 7.6%. Average La− and rating of perceived exertion (RPE) did not differ between the sessions. Conclusions: Using ARDSV during SIE provokes respiratory acidosis, causes stronger acute physiological responses, and does not increase RPE.

Author(s):  
Natalia Danek ◽  
Marcin Smolarek ◽  
Kamil Michalik ◽  
Marek Zatoń

Background: Knowledge of acute responses to different sprint interval exercise (SIE) helps to implement new training programs. The aim of this study was to compare the acute physiological, metabolic and perceptual responses to two different SIE cycling protocols with different recovery durations. Methods: Twelve healthy, active male participants took part in this study and completed four testing sessions in the laboratory separated by a minimum of 72h. Two SIE protocols were applied in randomized order: SIE6×10”/4’—six “all-out” repeated 10-s bouts, interspersed with 4-min recovery; and SIESERIES—two series of three “all-out” repeated 10-s bouts, separated by 30-s recovery and 18-min recovery between series. Protocols were matched for the total work time (1 min) and recovery (20 min). Results: In SIESERIES, peak oxygen uptake and peak heart rate were significantly higher (p < 0.05), without differences in peak blood lactate concentration and mean rating of perceived exertion compared to SIE6×10”/4’. There were no differences in peak power output, peak oxygen uptake and peak heart rate between both series in SIESERIES. Conclusions: Two series composed of three 10-s “all-out” bouts in SIESERIES protocol evoked higher cardiorespiratory responses, which can provide higher stimulus to improve aerobic fitness in regular training.


Author(s):  
Erik P. Andersson ◽  
Irina Hämberg ◽  
Paulo Cesar Do Nascimento Salvador ◽  
Kerry McGawley

Abstract Purpose This study aimed to compare physiological factors and cycle characteristics during cross-country (XC) roller-skiing at matched inclines and speeds using the double-poling (DP) and diagonal-stride (DS) sub-techniques in junior female and male XC skiers. Methods Twenty-three well-trained junior XC skiers (11 women, 12 men; age 18.2 ± 1.2 yr.) completed two treadmill roller-skiing tests in a randomized order using either DP or DS. The exercise protocols were identical and included a 5 min warm-up, 4 × 5 min submaximal stages, and an incremental test to exhaustion, all performed at a 5° incline. Results No significant three-way interactions were observed between sex, submaximal exercise intensity, and sub-technique. For the pooled sample, higher values were observed for DP versus DS during submaximal exercise for the mean oxygen uptake kinetics response time (33%), energy cost (18%), heart rate (HR) (9%), blood lactate concentration (5.1 versus 2.1 mmol·L−1), rating of perceived exertion (12%), and cycle rate (25%), while cycle length was lower (19%) (all P < 0.001). During the time-to-exhaustion (TTE) test, peak oxygen uptake ($$\dot{V}$$ V ˙ O2peak), peak HR, and peak oxygen pulse were 8%, 2%, and 6% lower, respectively, for DP than DS, with a 29% shorter TTE during DP (pooled data, all P < 0.001). Conclusion In well-trained junior XC skiers, DP was found to exert a greater physiological load than DS during uphill XC roller-skiing at submaximal intensities. During the TTE test, both female and male athletes were able to ski for longer and reached markedly higher $$\dot{V}$$ V ˙ O2peak values when using DS compared to DP.


Author(s):  
Santiago C. Arce ◽  
Fernando Chiodetti ◽  
Eduardo L. De Vito

2021 ◽  
Author(s):  
Étienne Chassé ◽  
Daniel Théoret ◽  
Martin P Poirier ◽  
François Lalonde

ABSTRACT Introduction Members of the Canadian Armed Forces (CAF) are required to meet the minimum standards of the Fitness for Operational Requirements of CAF Employment (FORCE) job-based simulation test (JBST) and must possess the capacity to perform other common essential tasks. One of those tasks is to perform basic fire management tasks during fire emergencies to mitigate damage and reduce the risk of injuries and/or death until professional firefighters arrive at the scene. To date however, the physiological demands of common firefighting tasks have mostly been performed on professional firefighters, thus rendering the transferability of the demands to the general military population unclear. This pilot study aimed to quantify, for the first time, the physiological demands of basic fire management tasks in the military, to determine if they are reflected in the FORCE JBST minimum standard. We hypothesized that the physiological demands of basic fire management tasks within the CAF are below the physiological demands of the FORCE JBST minimum standard, and as such, be lower than the demands of professional firefighting. Materials and methods To achieve this, 21 CAF members (8 females; 13 males; mean [SD] age: 33 [10] years; height: 174.5 [10.5] cm; weight: 85.4 [22.1] kg, estimated maximal oxygen uptake [$\dot V$O2peak]: 44.4 (7.4) mL kg−1 min−1) participated in a realistic, but physically demanding, JBST developed by CAF professional firefighting subject matter experts. The actions included lifting, carrying, and manipulating a 13-kg powder fire extinguisher and connecting, coupling, and dragging a 38-mm fire hose over 30 m. The rate of oxygen uptake ($\dot V$O2), heart rate, and percentage of heart rate reserve were measured continuously during two task simulation trials, which were interspersed by a recovery period. Rating of perceived exertion (6-no exertion; 20-maximal exertion) was measured upon completion of both task simulations. Peak $\dot V$O2 ($\dot V$O2peak) was estimated based on the results of the FORCE JBST. Results The mean (SD) duration of both task simulation trials was 3:39 (0:19) min:s, whereas the rest period in between both trials was 62 (19) minutes. The mean O2 was 21.1 (4.7) mL kg−1 min−1 across trials, which represented 52.1 (12.2) %$\dot V$O2peak and ∼81% of the FORCE JBST. This was paralleled by a mean heart rate of 136 (18) beats min−1, mean percentage of heart rate reserve of 61.2 (10.8), and mean rating of perceived exertion of 11 ± 2. Other physical components of the JBST consisted of lifting, carrying, and manipulating a 13-kg load for ∼59 seconds, which represents 65% of the load of the FORCE JBST. The external resistance of the fire hose drag portion increased up to 316 N, translating to a total of 6205 N over 30 m, which represents 96% of the drag force measured during the FORCE JBST. Conclusions Our findings demonstrate that the physiological demands of basic fire management tasks in the CAF are of moderate intensity, which are reflected in the CAF physical fitness standard. As such, CAF members who achieve the minimum standard on the FORCE JBST are deemed capable of physically performing basic fire management tasks during fire emergencies.


2021 ◽  
Vol 33 (2) ◽  
pp. 65-69
Author(s):  
C. Eric Heidorn ◽  
Brandon J. Dykstra ◽  
Cori A. Conner ◽  
Anthony D. Mahon

Purpose: This study examined the physiological, perceptual, and performance effects of a 6% carbohydrate (CHO) drink during variable-intensity exercise (VIE) and a postexercise test in premenarchal girls. Methods: A total of 10 girls (10.4 [0.7] y) participated in the study. VO2peak was assessed, and the girls were familiarized with VIE and performance during the first visit. The trial order (CHO and placebo) was randomly assigned for subsequent visits. The drinks were given before VIE bouts and 1-minute performance (9 mL/kg total). Two 15-minute bouts of VIE were completed (10 repeated sequences of 20%, 55%, and 95% power at VO2peak and maximal sprints) before a 1-minute performance sprint. Results: The mean power, peak power, heart rate (HR), %HRpeak, and rating of perceived exertion during VIE did not differ between trials. However, the peak power decreased, and the rating of perceived exertion increased from the first to the second bout. During the 1-minute performance, there were no differences between the trial (CHO vs placebo) for HR (190 [9] vs 189 [9] bpm), %HRpeak (97.0% [3.2%] vs 96.6% [3.0%]), rating of perceived exertion (7.8 [2.3] vs 8.1 [1.9]), peak power (238 [70] vs 235 [60] W), fatigue index (54.7% [10.0%] vs 55.9% [12.8%]), or total work (9.4 [2.6] vs 9.4 [2.1] kJ). Conclusion: CHO supplementation did not alter physiological, perceptual, or performance responses during 30 minutes of VIE or postexercise sprint performance in premenarchal girls.


1984 ◽  
Vol 64 (2) ◽  
pp. 505-543 ◽  
Author(s):  
J. M. Drazen ◽  
R. D. Kamm ◽  
A. S. Slutsky

Complete physiological understanding of HFV requires knowledge of four general classes of information: 1) the distribution of airflow within the lung over a wide range of frequencies and VT (sect. IVA), 2) an understanding of the basic mechanisms whereby the local airflows lead to gas transport (sect. IVB), 3) a computational or theoretical model in which transport mechanisms are cast in such a form that they can be used to predict overall gas transport rates (sect. IVC), and 4) an experimental data base (sect. VI) that can be compared to model predictions. When compared with available experimental data, it becomes clear that none of the proposed models adequately describes all the experimental findings. Although the model of Kamm et al. is the only one capable of simulating the transition from small to large VT (as compared to dead-space volume), it fails to predict the gas transport observed experimentally with VT less than equipment dead space. The Fredberg model is not capable of predicting the observed tendency for VT to be a more important determinant of gas exchange than is frequency. The remaining models predict a greater influence of VT than frequency on gas transport (consistent with experimental observations) but in their current form cannot simulate the additional gas exchange associated with VT in excess of the dead-space volume nor the decreased efficacy of HFV above certain critical frequencies observed in both animals and humans. Thus all of these models are probably inadequate in detail. One important aspect of these various models is that some are based on transport experiments done in appropriately scaled physical models, whereas others are entirely theoretical. The experimental models are probably most useful in the prediction of pulmonary gas transport rates, whereas the physical models are of greater value in identifying the specific transport mechanism(s) responsible for gas exchange. However, both classes require a knowledge of the factors governing the distribution of airflow under the circumstances of study as well as requiring detail about lung anatomy and airway physical properties. Only when such factors are fully understood and incorporated into a general description of gas exchange by HFV will it be possible to predict or explain all experimental or clinical findings.


2017 ◽  
Vol 02 (01) ◽  
pp. E1-E8 ◽  
Author(s):  
Matthew Batliner ◽  
Shalaya Kipp ◽  
Alena Grabowski ◽  
Rodger Kram ◽  
William Byrnes

AbstractRunning economy (oxygen uptake or metabolic rate for running at a submaximal speed) is one of the key determinants of distance running performance. Previous studies reported linear relationships between oxygen uptake or metabolic rate and speed, and an invariant cost of transport across speed. We quantified oxygen uptake, metabolic rate, and cost of transport in 10 average and 10 sub-elite runners. We increased treadmill speed by 0.45 m·s−1 from 1.78 m·s−1 (day 1) and 2.01 m·s−1 (day 2) during each subsequent 4-min stage until reaching a speed that elicited a rating of perceived exertion of 15. Average runners’ oxygen uptake and metabolic rate vs. speed relationships were best described by linear fits. In contrast, the sub-elite runners’ relationships were best described by increasing curvilinear fits. For the sub-elites, oxygen cost of transport and energy cost of transport increased by 12.8% and 9.6%, respectively, from 3.58 to 5.14 m·s−1. Our results indicate that it is not possible to accurately predict metabolic rates at race pace for sub-elite competitive runners from data collected at moderate submaximal running speeds (2.68–3.58 m·s−1). To do so, metabolic rate should be measured at speeds that approach competitive race pace and curvilinear fits should be used for extrapolation to race pace.


Sign in / Sign up

Export Citation Format

Share Document