scholarly journals Effect of Running Velocity Variation on the Aerobic Cost of Running

Author(s):  
Madeline Ranum ◽  
Carl Foster ◽  
Clayton Camic ◽  
Glenn Wright ◽  
Flavia Guidotti ◽  
...  

The aerobic cost of running (CR), an important determinant of running performance, is usually measured during constant speed running. However, constant speed does not adequately reflect the nature of human locomotion, particularly competitive races, which include stochastic variations in pace. Studies in non-athletic individuals suggest that stochastic variations in running velocity produce little change in CR. This study was designed to evaluate whether variations in running speed influence CR in trained runners. Twenty competitive runners (12 m, VO2max = 73 ± 7 mL/kg; 8f, VO2max = 57 ± 6 mL/kg) ran four 6-minute bouts at an average speed calculated to require ~90% ventilatory threshold (VT) (measured using both v-slope and ventilatory equivalent). Each interval was run with minute-to-minute pace variation around average speed. CR was measured over the last 2 min. The coefficient of variation (CV) of running speed was calculated to quantify pace variations: ±0.0 m∙s−1 (CV = 0%), ±0.04 m∙s−1 (CV = 1.4%), ±0.13 m∙s−1(CV = 4.2%), and ±0.22 m∙s−1(CV = 7%). No differences in CR, HR, or blood lactate (BLa) were found amongst the variations in running pace. Rating of perceived exertion (RPE) was significantly higher only in the 7% CV condition. The results support earlier studies with short term (3s) pace variations, that pace variation within the limits often seen in competitive races did not affect CR when measured at running speeds below VT.

2015 ◽  
Vol 10 (8) ◽  
pp. 1023-1028 ◽  
Author(s):  
Vincenzo Manzi ◽  
Antonio Bovenzi ◽  
Carlo Castagna ◽  
Paola Sinibaldi Salimei ◽  
Maurizio Volterrani ◽  
...  

Purpose:To assess the distribution of exercise intensity in long-distance recreational athletes (LDRs) preparing for a marathon and to test the hypothesis that individual perception of effort could provide training responses similar to those provided by standardized training methodologies.Methods:Seven LDRs (age 36.5 ± 3.8 y) were followed during a 5-mo training period culminating with a city marathon. Heart rate at 2.0 and 4.0 mmol/L and maximal heart rate were used to establish 3 intensity training zones. Internal training load (TL) was assessed by training zones and TRIMPi methods. These were compared with the session-rating-of-perceived-exertion (RPE) method.Results:Total time spent in zone 1 was higher than in zones 2 and 3 (76.3% ± 6.4%, 17.3% ± 5.8%, and 6.3% ± 0.9%, respectively; P = .000 for both, ES = 0.98, ES = 0.99). TL quantified by session-RPE provided the same result. The comparison between session-RPE and training-zones-based methods showed no significant difference at the lowest intensity (P = .07, ES = 0.25). A significant correlation was observed between TL RPE and TL TRIMPi at both individual and group levels (r = .79, P < .001). There was a significant correlation between total time spent in zone 1 and the improvement at the running speed of 2 mmol/L (r = .88, P < .001). A negative correlation was found between running speed at 2 mmol/L and the time needed to complete the marathon (r = –.83, P < .001).Conclusions:These findings suggest that in recreational LDRs most of the training time is spent at low intensity and that this is associated with improved performances. Session-RPE is an easy-to-use training method that provides responses similar to those obtained with standardized training methodologies.


Author(s):  
Pedro L. Valenzuela ◽  
Jaime Gil-Cabrera ◽  
Eduardo Talavera ◽  
Lidia B. Alejo ◽  
Almudena Montalvo-Pérez ◽  
...  

Purpose: To compare the effectiveness of resistance power training (RPT, training with the individualized load and repetitions that maximize power output) and cycling power training (CPT, short sprint training) in professional cyclists. Methods: The participants (20 [2] y, peak oxygen uptake 78.0 [4.4] mL·kg−1·min−1) were randomly assigned to perform CPT (n = 8) or RPT (n = 10) in addition to their usual training regime for 7 weeks (2 sessions/wk). The training loads were continuously registered using the session rating of perceived exertion. The outcomes included endurance performance (8-min time trial and incremental test), as well as measures of muscle strength/power (1-repetition maximum and mean maximum propulsive power on the squat, hip thrust, and lunge exercises) and body composition (assessed by dual-energy X-ray absorptiometry). Results: No between-group differences were found for training loads or for any outcome (P > .05). Both interventions resulted in increased time-trial performance, as well as in improvements in other endurance-related outcomes (ie, ventilatory threshold, respiratory compensation point; P < .05). A significant or quasi-significant increase (P = .068 and .047 for CPT and RPT, respectively) in bone mineral content was observed after both interventions. A significant reduction in fat mass (P = .017), along with a trend (P = .059) toward a reduced body mass, was observed after RPT, but not CPT (P = .076 for the group × time interaction effect). Significant benefits (P < .05) were also observed for most strength-related outcomes after RPT, but not CPT. Conclusion: CPT and RPT are both effective strategies for the improvement of endurance performance and bone health in professional cyclists, although the latter tends to result in greater improvements in body composition and muscle strength/power.


Author(s):  
Devin Goddard McCarthy ◽  
William Bostad ◽  
Fiona Jane Powley ◽  
Jonathan P. Little ◽  
Douglas Richards ◽  
...  

There is growing interest in the effect of exogenous ketone body supplementation on exercise responses and performance. The limited studies to date have yielded equivocal data, likely due in part to differences in dosing strategy, increase in blood ketones, and participant training status. Using a randomized, double-blind, counterbalanced design, we examined the effect of ingesting a ketone monoester (KE) supplement (600 mg/kg body mass) or flavour-matched placebo in endurance-trained adults (n=10 males, n=9 females; VO2peak=57±8 ml/kg/min). Participants performed a 30-min cycling bout at ventilatory threshold intensity (71±3% VO2peak), followed 15 min later by a 3 kJ/kg body mass time-trial. KE versus placebo ingestion increased plasma [β-hydroxybutyrate] before exercise (3.9±1.0 vs 0.2±0.3 mM, p<0.0001, dz=3.4), ventilation (77±17 vs 71±15 L/min, p<0.0001, dz=1.3) and heart rate (155±11 vs 150±11 beats/min, p<0.001, dz=1.2) during exercise, and rating of perceived exertion at the end of exercise (15.4±1.6 vs 14.5±1.2, p<0.01, dz=0.85). Plasma [β-hydroxybutyrate] remained higher after KE vs placebo ingestion before the time-trial (3.5±1.0 vs 0.3±0.2 mM, p<0.0001, dz=3.1), but performance was not different (KE: 16:25±2:50 vs placebo: 16:06±2:40 min:s, p=0.20; dz=0.31). We conclude that acute ingestion of a relatively large KE bolus dose increased markers of cardiorespiratory stress during submaximal exercise in endurance-trained participants. Novelty bullets: •Limited studies have yielded equivocal data regarding exercise responses after acute ketone body supplementation. •Using a randomized, double-blind, placebo-controlled, counterbalanced design, we found that ingestion of a large bolus dose of a commercial ketone monoester supplement increased markers of cardiorespiratory stress during cycling at ventilatory threshold intensity in endurance-trained adults.


2004 ◽  
Vol 132 (11-12) ◽  
pp. 409-413 ◽  
Author(s):  
Stanimir Stojiljkovic ◽  
Dejan Nesic ◽  
Sanja Mazic ◽  
Dejana Popovic ◽  
Dusan Mitrovic ◽  
...  

The objective of the study was to test the possibility of using the fixed value (12-13) of the Rating of Perceived scale (RPE scale), as a valid method for determination of ventilatory threshold (VT). The sample of the subjects included 32 physically active males (age: 22.3; TV: 180.5; TM: 75.5 kg; V02max: 57.1 mL/kg/min). During the continuous test of progressively increasing load on a treadmill, cardiorespiratory and other parameters were monitored using ECG and gas analyzer. Following the test, VT and V02max were determined. During the test, at each level, at the scale from 6 to 20, the subjects pointed the number that suited best their currently feeling of strain. The RPE threshold was defined as constant value of 12-13. Average values of ventilatory and RPE threshold were expressed by parameters that were monitored and then compared by using t-test for dependent samples. No significant difference was found between mean values of VT and RPE threshold, when they were expressed by relevant parameters: speed, load, heart rate, absolute and relative oxygen consumption. Fixed value (12-13) of RPE scale may be used to detect the exercise intensity that corresponds to ventilatory threshold.


2020 ◽  
pp. 030573562090477
Author(s):  
Jorge A Aburto-Corona ◽  
J A de Paz ◽  
José Moncada-Jiménez ◽  
Bryan Montero-Herrera ◽  
Luis M Gómez-Miranda

The purpose of this study was to determine the effect of the musical tempo on heart rate (HR), rating of perceived exertion (RPE), and distance run (DR) during a treadmill aerobic test in young male and female adults. Participants ran on the treadmill listening to music at 140 beats per minute (bpm; M140), 120 bpm (M120), or without music (NM). No significant sex differences were found on HR (M140 = 172.6 ± 12.7, M120 = 171.9 ± 11.1, NM = 170.1 ± 12.2 bpm, p = .312), RPE (M140 = 7.5 ± 1.4, M120 = 7.6 ± 1.3, NM = 7.6 ± 1.2, p = .931), or DR (M140 = 4,791.4 ± 2,681.1, M120 = 4,900.0 ± 2,916.9, NM = 4,356.1 ± 2,571.2 m, p = .715). Differences were found in the effect of tempo on HR between condition M140 and NM (172.6 ± 12.7 vs. 170.1 ± 12.2 bpm, p = .044, η2 = 0.32). In conclusion, musical tempo does not affect performance, physiological, or perceptual variables in young adults exercising on a treadmill at a constant speed.


Sports ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 23
Author(s):  
Gavriil G. Arsoniadis ◽  
Ioannis S. Nikitakis ◽  
Petros G. Botonis ◽  
Ioannis Malliaros ◽  
Argyris G. Toubekis

Background: Physiological and biomechanical parameters obtained during testing need validation in a training setting. The purpose of this study was to compare parameters calculated by a 5 × 200-m test with those measured during an intermittent swimming training set performed at constant speed corresponding to blood lactate concentration of 4 mmol∙L−1 (V4). Methods: Twelve competitive swimmers performed a 5 × 200-m progressively increasing speed front crawl test. Blood lactate concentration (BL) was measured after each 200 m and V4 was calculated by interpolation. Heart rate (HR), rating of perceived exertion (RPE), stroke rate (SR) and stroke length (SL) were determined during each 200 m. Subsequently, BL, HR, SR and SL corresponding to V4 were calculated. A week later, swimmers performed a 5 × 400-m training set at constant speed corresponding to V4 and BL-5×400, HR-5×400, RPE-5×400, SR-5×400, SL-5×400 were measured. Results: BL-5×400 and RPE-5×400 were similar (p > 0.05), while HR-5×400 and SR-5×400 were increased and SL-5×400 was decreased compared to values calculated by the 5 × 200-m test (p < 0.05). Conclusion: An intermittent progressively increasing speed swimming test provides physiological information with large interindividual variability. It seems that swimmers adjust their biomechanical parameters to maintain constant speed in an aerobic endurance training set of 5 × 400-m at intensity corresponding to 4 mmol∙L−1.


2017 ◽  
Vol 38 (09) ◽  
pp. 675-682 ◽  
Author(s):  
André Siegl ◽  
Elisa M. Kösel ◽  
Nicholas Tam ◽  
Susanne Koschnick ◽  
Nelleke Langerak ◽  
...  

AbstractThe regular monitoring of athletes is important to fine-tune training and detect early symptoms of overreaching. Therefore the aim of this study was to determine if a noninvasive submaximal running test could reflect a state of overreaching. 14 trained runners completed a noninvasive Lamberts Submaximal Running Test, one week before and 2 days after finishing an ultramarathon, and delayed onset of muscle soreness and the daily analysis of life demands for athletes questionnaire were also captured. After the ultramarathon, submaximal heart rate was lower at 70% (−3 beats) and 85% of peak treadmill running speed (P<0.01). Ratings of perceived exertion were higher at 60% (2 units) and 85% (one unit) of peak treadmill running speed, while 60-second heart rate recovery was significantly faster (7 beats, P<0.001). Delayed Onset of Muscle Soreness scores and the number of symptoms of stress (Daily Analysis of Life Demands for Athletes) were also higher after the ultramarathon (P<0.01). The current study shows that the Lamberts Submaximal Running Test is able to reflect early symptoms of overreaching. Responses to acute fatigue and overreaching were characterized by counterintuitive responses, such as lower submaximal heart rates and faster heart rate recovery, while ratings of perceived exertion were higher.


1987 ◽  
Vol 56 (2) ◽  
pp. 206-211 ◽  
Author(s):  
David W. Hill ◽  
Kirk J. Cureton ◽  
S. Cheryl Grisham ◽  
Mitchell A. Collins

2010 ◽  
Vol 7 (2) ◽  
pp. 203-213 ◽  
Author(s):  
Gordon J. Bell ◽  
Vicki Harber ◽  
Terra Murray ◽  
Kerry S. Courneya ◽  
Wendy Rodgers

Background:Fitness and health variables were measured in 128 sedentary men and women randomly assigned to 6 months of fitness training (F), a walking program (W), or a control (C) group.Methods:The F program gradually increased volume and intensity until 4 d/wk of training, at 70% of peak VO2 for 43 min/session was prescribed while the W group performed daily walking monitored with pedometers and increased until 10,000 steps×d−1 were prescribed. Total weekly energy expenditure was matched between the activity groups. The control group was asked to maintain their usual activity.Results:Body mass, waist circumference, waist/hip ratio, resting HR were reduced in all groups after 6 months (P < .05). Fasting glucose, glucose tolerance, and total cholesterol were similarly improved in all groups (P < .05). Blood pressure and HR decreased during submaximal exercise in all groups (P < .05) but rating of perceived exertion (RPE) was decreased only in the F group (P < .05). Only the F participants showed a significant increase in ventilatory threshold (VT; ~15%) and peak VO2 (~9%) after 6 months.Conclusions:Supervised fitness training in previously sedentary adults produced greater improvements in submaximal RPE, BPsys, VT, and peak VO2 but not other fitness and health-related variables compared with a pedometer-based walking program matched for total energy cost.


Sign in / Sign up

Export Citation Format

Share Document