scholarly journals Structure of Bacterial Community with Resistance to Antibiotics in Aquatic Environments. A Systematic Review

Author(s):  
Ana María Sánchez-Baena ◽  
Luz Dary Caicedo-Bejarano ◽  
Mónica Chávez-Vivas

Aquatic environments have been affected by the increase in bacterial resistant to antibiotics. The aim of this review is to describe the studies carried out in relation to the bacterial population structure and antibiotic resistance genes in natural and artificial water systems. We performed a systematic review based on the PRISMA guideline (preferred reporting items for systematic reviews and meta-analyzes). Articles were collected from scientific databases between January 2010 and December 2020. Sixty-eight papers meeting the inclusion criteria, i.e., “reporting the water bacterial community composition”, “resistance to antibiotics”, and “antibiotic resistance genes (ARG)”, were evaluated according to pre-defined validity criteria. The results indicate that the predominant phyla were Firmicutes and Bacteroidetes in natural and artificial water systems. Gram-negative bacteria of the family Enterobacteraceae with resistance to antibiotics are commonly reported in drinking water and in natural water systems. The ARGs mainly reported were those that confer resistance to β-lactam antibiotics, aminoglycosides, fluoroquinolones, macrolides and tetracycline. The high influence of anthropogenic activity in the environment is evidenced. The antibiotic resistance genes that are mainly reported in the urban areas of the world are those that confer resistance to the antibiotics that are most used in clinical practice, which constitutes a problem for human and animal health.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xu Cheng ◽  
Yitong Lu ◽  
Yanzhen Song ◽  
Ruifang Zhang ◽  
Xinyan ShangGuan ◽  
...  

The excessive use of antibiotics speeds up the dissemination and aggregation of antibiotic resistance genes (ARGs) in the environment. The ARGs have been regarded as a contaminant of serious environmental threats on a global scale. The constant increase in aquaculture production has led to extensive use of antibiotics as a means to prevent and treat bacterial infections; there is a universal concern about the environmental risk of ARGs in the aquaculture environment. In this study, a survey was conducted to evaluate the abundance and distributions of 10 ARGs, bacterial community, and environmental factors in sediment samples from aquatic farms distributed in Anhui (AP1, AP2, and AP3), Fujian (FP1, FP2, and FP3), Guangxi (GP1, GP2, and GP3), Hainan (HP1, HP2, and HP3), and Shaanxi (SP1, SP2, and SP3) Province in China. The results showed that the relative abundance of total ARGs was higher in AP1, AP2, AP3, FP3, GP3, HP1, HP2, and HP3 than that in FP1, FP2, GP1, GP2, SP1, SP2, and SP3. The sul1 and tetW genes of all sediment samples had the highest abundance. The class 1 integron (intl1) was detected in all samples, and the result of Pearson correlation analysis showed that the intl1 has a positive correlation with the sul1, sul2, sul3, blaOXA, qnrS, tetM, tetQ, and tetW genes. Correlation analysis of the bacterial community diversity and environmental factors showed that the Ca2+ concentration has a negative correlation with richness and diversity of the bacterial community in these samples. Of the identified bacterial community, Proteobacteria, Firmicutes, Chloroflexi, and Bacteroidota were the predominant phyla in these samples. Redundancy analysis showed that environmental factors (TN, TP, Cl–, and Ca2+) have a positive correlation with the bacterial community (AP1, GP1, GP2, GP3, SP1, SP2, and SP3), and the abundance of ARGs (sul1, tetW, qnrS, and intl1) has a positive correlation with the bacterial community (AP2, AP3, HP1, HP2, and HP3). Based on the network analysis, the ARGs (sul1, sul2, blaCMY, blaOXA, qnrS, tetW, tetQ, tetM, and intl1) were found to co-occur with bacterial taxa from the phyla Chloroflexi, Euryarchaeota, Firmicutes, Halobacterota, and Proteobacteria. In conclusion, this study provides an important reference for understanding the environmental risk associated with aquaculture activities in China.


mSystems ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Susan M. Joseph ◽  
Thomas Battaglia ◽  
Julia M. Maritz ◽  
Jane M. Carlton ◽  
Martin J. Blaser

ABSTRACT Bacterial resistance to antibiotics is a pressing health issue around the world, not only in health care settings but also in the community and environment, particularly in crowded urban populations. The aim of our work was to characterize the microbial populations in sewage and the spread of antibiotic resistance within New York City (NYC). Here, we investigated the structure of the microbiome and the prevalence of antibiotic resistance genes in raw sewage samples collected from the fourteen NYC Department of Environmental Protection wastewater treatment plants, distributed across the five NYC boroughs. Sewage, a direct output of anthropogenic activity and a reservoir of microbes, provides an ecological niche to examine the spread of antibiotic resistance. Taxonomic diversity analysis revealed a largely similar and stable bacterial population structure across all the samples, which was found to be similar over three time points in an annual cycle, as well as in the five NYC boroughs. All samples were positive for the presence of the seven antibiotic resistance genes tested, based on real-time quantitative PCR assays, with higher levels observed for tetracycline resistance genes at all time points. For five of the seven genes, abundances were significantly higher in May than in February and August. This study provides characteristics of the NYC sewage resistome in the context of the overall bacterial populations. IMPORTANCE Urban sewage or wastewater is a diverse source of bacterial growth, as well as a hot spot for the development of environmental antibiotic resistance, which can in turn influence the health of the residents of the city. As part of a larger study to characterize the urban New York City microbial metagenome, we collected raw sewage samples representing three seasonal time points spanning the five boroughs of NYC and went on to characterize the microbiome and the presence of a range of antibiotic resistance genes. Through this study, we have established a baseline microbial population and antibiotic resistance abundance in NYC sewage which can prove to be very useful in studying the load of antibiotic usage, as well as for developing effective measures in antibiotic stewardship.


Sign in / Sign up

Export Citation Format

Share Document