scholarly journals Toxic Organic Contaminants in Airborne Particles: Levels, Potential Sources and Risk Assessment

Author(s):  
Donatella Pomata ◽  
Patrizia Di Filippo ◽  
Carmela Riccardi ◽  
Federica Castellani ◽  
Giulia Simonetti ◽  
...  

In the last years, many studies have focused on risk assessment of exposure of workers to airborne particulate matter (PM). Several studies indicate a strong correlation between PM and adverse health outcomes, as a function of particle size. In the last years, the study of atmospheric particulate matter has focused more on particles less than 10 μm or 2.5 μm in diameter; however, recent studies identify in particles less than 0.1 μm the main responsibility for negative cardiovascular effects. The present paper deals with the determination of 66 organic compounds belonging to six different classes of persistent organic pollutants (POPs) in the ultrafine, fine and coarse fractions of PM (PM < 0.1 µm; 0.1 < PM < 2.5 µm and 2.5 < PM < 10 µm) collected in three outdoor workplaces and in an urban outdoor area. Data obtained were analyzed with principal component analysis (PCA), in order to underline possible correlation between sites and classes of pollutants and characteristic emission sources. Emission source studies are, in fact, a valuable tool for both identifying the type of emission source and estimating the strength of each contamination source, as useful indicator of environment healthiness. Moreover, both carcinogenic and non-carcinogenic risks were determined in order to estimate human health risk associated to study sites. Risk analysis was carried out evaluating the contribution of pollutant distribution in PM size fractions for all the sites. The results highlighted significant differences between the sites and specific sources of pollutants related to work activities were identified. In all the sites and for all the size fractions of PM both carcinogenic and non-carcinogenic risk values were below acceptable and safe levels of risks recommended by the regulatory agencies.


2021 ◽  
Author(s):  
Angelo Cecinato ◽  
Alessandro Bacaloni ◽  
Paola Romagnoli ◽  
Mattia Perilli ◽  
Catia Balducci

Abstract The composition of organic fraction released in emissions varies with its nature and contour conditions; hence, the chemical signature of atmospheric particulate matter and dusts are investigated to identify the pollution sources and assess the respective aftermaths on environment and health. For this purpose, three complementary tools are usually adopted, i.e. specific source markers, concentration ratios of pairs of congeners, and percent distribution profiles of homologues (including derived “carbon preference indexes”). This paper provides an overview of investigations dealing with chemical signature of emission sources, applied to non-polar aliphatic (alkanes), aromatic (PAHs, Nitro-PAHs) and polar (fatty acids, organic halides, polysaccharides) organics affecting atmospheric particulate matter and deposition dust. Despite a rich literature is nowadays available, further investigations seem necessary to clarify the nature, sources and behaviors of mid-volatile, non-polar organic contaminants. More sophisticated investigations have gained importance recently (principal component analysis, source factorization modelling), nevertheless molecular fingerprints remain suitable to draw primary insights about the nature and impact of sources of environmental pollution.



Minerals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 866 ◽  
Author(s):  
Marzena Rachwał ◽  
Małgorzata Wawer ◽  
Mariola Jabłońska ◽  
Wioletta Rogula-Kozłowska ◽  
Patrycja Rogula-Kopiec

The main objective of this research was the determination of the geochemical and mineralogical properties of particulate matter: TSP (total suspended particles) and, especially PM1 (particles with aerodynamic diameter not greater than 1 µm) suspended in the air of a selected urban area in southern Poland. Identification of the emission sources of metals and metalloids bound in TSP and PM1 as well as the assessment of potential risk of urban ambient air to human health using hazard indices was an additional aim of this investigation. The daily TSP and PM1 quartz fiber filters collected during heating season were subjected to mass magnetic susceptibility (χ) measurements, SEM (Scanning Electron Microscopy) observations and geochemical analyses. Obtained results revealed that the concentration of TSP and PM1 well correlated with their mass-specific magnetic susceptibility. The good relationship between the PM concentration and χ suggests that magnetic susceptibility measurements can be a good proxy of low-level atmospheric dust pollution. The rank order of potentially toxic elements (PTE) based on average concentration was Ba > Zn > Al > Fe > Pb > Mn > Ti > Cu > Cr > Ni >As > Cd > V > Tl, both for TSP and PM1. PM1/TSP ratios for PTE concentrations and χ were around or slightly above unity, which indicated that PM1 was the main carrier of PTE (with the exception of cadmium, copper and lead) and technogenic magnetic particles. The non-carcinogenic and carcinogenic risks were confirmed by very high values of human health indices.







2003 ◽  
Vol 13 (03n04) ◽  
pp. 133-139 ◽  
Author(s):  
F. ALDAPE ◽  
J. FLORES M.

Samples of airborne particulate matter were collected in four sites along an east-west line from the Popocatépetl volcano after the eruption episode of June 30, 1997. The Popocatépetl volcano, with variable activity since it was known, is currently under low but continuous activity prolonged for almost one decade, with occasional moderate eruption episodes producing mainly fumes, ashes and volcanic dusts. The main objective of this study is to determine whether or not some elements have increased their presence in the atmosphere as a result of the volcanic activity, and also if some others, not usually found in urban aerosols, have appeared because of the same reason. In addition, the information obtained will be a source of scientific data for health risk assessment of the population exposed to volcanic emanations. The sample collection was performed on alternate days from July 10 to August 13 1997 in Puebla and Atlixco in Puebla State. Tlalpan within Mexico City, and Salazar in the State of Mexico. Two samples a day were taken in two periods: 7-19 h and 19-7 h. The samplers separated particles into two particle size fractions. PM25 and PM15. Elemental concentrations were determined by PIXE and the results obtained showed increased concentrations of mainly Ti and Fe in all sampling sites, thus indicating a long range transportation of volcanic dusts in both particle size fractions. Concentrations of Ti were found clearly above the average values of urban areas such as Mexico City, and although this element can be considered of low toxicity, the biological, metabolic and toxic effects on human beings are still under investigation.



2021 ◽  
Vol 21 (3) ◽  
pp. 807-818
Author(s):  
CRISTIANA RADULESCU ◽  
RODICA MARIANA ION ◽  
CLAUDIA STIHI ◽  
IOANA DANIELA DULAMA ◽  
CRISTINA MIHAELA NICOLESCU ◽  
...  

The present paper is focused on the microclimatic investigation and weather-climatic phenomena matrix assessment, which can be generated for heritage objectives at different spatial and temporal resolutions, correlated with physicochemical analysis of the particulate matter (PM2.5-10). In the literature the importance of atmospheric PM monitoring in the proximity of monuments is not yet sufficiently highlighted. In this respect, the microclimatic investigation of the Tropaeum Traiani Monument (Adamclisi, Romania) was performed to assess the suitability of a closed environment, located outdoors, according to the conservation requirements of heritage materials. The monitoring campaigns (four seasons, e.g., from summer of the year 2018 to spring of the year 2019) were carried out by non-invasive measuring equipment. The collected data were used to investigate the hygrothermal and chemical behavior inside and outside of Tropaeum Traiani Monument, built in 109, to assess the risks on the oldest structural material. Principal component analysis (PCA) was performed by IBM SPSS Statistics software to assess the similarities between the microclimatic parameters.





Sign in / Sign up

Export Citation Format

Share Document