scholarly journals Optimization Strategy of Traditional Block Form Based on Field Investigation—A Case Study of Xi’an Baxian’an, China

Author(s):  
Wei Feng ◽  
Wei Ding ◽  
Yingdi Yin ◽  
Qixian Lin ◽  
Meng Zheng ◽  
...  

Rapid urbanization has caused environmental problems such as the urban heat island and air pollution, which are unfavorable to residents. Urban traditional blocks are facing the dual challenges of restoration and protection. This paper proposes adaptive transformation strategies for improving the microclimate of traditional areas. We selected Baxian’an Block in Xi’an city, simulated the air temperature and wind speed during summer and winter using ENVI-met, and studied the correlationship between morphological parameters (average building height, building density, enclosure degree, height fall, aspect ratio, and sky view factor) and air temperature and wind speed ratio. The case study revealed that the wind speed ratio of Baxian’an is relatively different in summer, reaching a maximum of 0.61, meaning that the ventilation capacity is significantly affected by the architectural form of the block. Finally, suggestions for the optimal design of the block’s form are provided: the building density should be less than 50%, the average building height should be more than 50 m, the enclosure degree should be less than 0.2, the height fall should be more than 41.7 m, and the sky view factor should be less than 0.5. This study can provide data and support for improving the planning and design standards of traditional residential areas.

Author(s):  
Jie Yin ◽  
Qingming Zhan ◽  
Muhammad Tayyab ◽  
Aqeela Zahra

Urban ventilation is being hampered by rough surfaces in dense urban areas, and the microclimate and air quality of the urban built environment are not ideal. Identifying urban ventilation paths is helpful to save energy, reduce emissions, and improve the urban ecological environment. Wuhan is the capital city of Hubei, and it has a high urban built intensity and hot summers. Taking Wuhan city, with a size of 35 km ×50 km, as an example, the built environment was divided into grids of 100 m × 100 m and included the building density, floor area ratio, and average building height. The ventilation mechanism of the urban built intensity index has previously been explained. The decrease in building density is not the sole factor causing an increase in wind speed; the enclosure and width of the ventilation path and the height of the front building are also influential. Twelve urban built units were selected for CFD numerical simulation. The ventilation efficiency of each grid was evaluated by calculating the wind speed ratio, maximum wind speed, average wind speed, and area ratio of strong wind. The relationship between the urban built intensity index and ventilation efficiency index was established using the factor analysis method and the Pearson correlation coefficient; building density and average building height are the most critical indexes of ventilation potential. In addition, the layout of the building also has an important impact on ventilation. A suitable built environment is that in which the building density is less than 30%, the average building height is greater than 15 m, and the floor area ratio is greater than 1.5. The urban built intensity map was weighted to identify urban ventilation paths. The paper provides a quantitative reference for scientific planning and design of the urban spatial form to improve ventilation.


Nano LIFE ◽  
2018 ◽  
Vol 08 (02) ◽  
pp. 1840006
Author(s):  
Jing Li ◽  
Mengnan Qi ◽  
Qiuhua Duan ◽  
Lei Huo ◽  
Julian Wang

Significant changes in the urban built environment have occurred due to rapid urbanization and increases in the urban population. Such alterations may produce environmental health-related issues such as urban heat stress, air pollution and traffic noise. This research undertook a field study to collect data including urban design parameters, micro-environmental factors and city climatic information. This work was conducted over a two-year period on three pedestrian streets located in high-density urban areas in Beijing. These areas were selected in order to study the influences of urban street canyon texture within a particular geometric layout, wind flow corridors and variations in air temperature on pedestrian microclimatic comfort. The results will facilitate the work of urban planners by providing them with information for use in improving outdoor thermal comfort through their designs. A total of 60[Formula: see text]485 samples were organized into training, validation and test sets. We confirmed our hypothesis that internal wind speed ([Formula: see text] is attributable mainly to the urban texture coefficient ([Formula: see text], air temperature ([Formula: see text] and leading-in wind speed ([Formula: see text]. The model was tested using the test data collected onsite, which demonstrated a very accurate goodness-of-fit; the model achieved an R-squared value of 0.82, which meant that [Formula: see text] as a dependent variable was 82% correlated to the three predictors as independent variables. With this computer simulation, urban planners can now predict and visualize the impact of changes on the built environment in terms of either the direction of solar radiation received or increases in wind speed, in return for the desired thermal comfort level for residents of the neighborhood.


Author(s):  
Vicente De Paulo Rodrigues da Silva ◽  
Joel Silva Santos ◽  
Eduardo Rodrigues Viana de Lima ◽  
Romildo Morant de Holanda ◽  
Enio Pereira de Sousa ◽  
...  

Urbanization modifies the heat balance in urban areas and has negative effects on landscape, aesthetics, energy efficiency, human health and the inhabitants’ quality of life. This work evaluated future scenarios of bioclimatic conditions for João Pessoa, a humid tropical city in Northeast Brazil. The scenarios were determined based on trends in air temperature, relative humidity and wind speed for the time period from 1968 to 2015. The study was performed for two distinct periods of three months each (dry and wet seasons) using data from weather stations equipped with thermo-hygrometers and cup anemometers located in nine representative areas of the city. Trends in air temperature, relative humidity, wind speed, and effective temperature index (ET index) time series were evaluated using the Mann-Kendall test. Results indicated that the air temperature showed an increasing trend of 0.34°C/decade, whereas the relative humidity showed a decreasing trend of 0.49%/decade and the wind speed values ranged from 1.3 ms-1 to 3.80 ms-1. These trends are statistically significant according to the Mann-Kendall test (p<0.05). The air temperature increased between the 1980s and 2010s, which corresponds to a period of rapid urbanization of the city. Future environmental conditions in João Pessoa will be determined in accordance with the urbanization processes.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 438 ◽  
Author(s):  
Tong Lyu ◽  
Riccardo Buccolieri ◽  
Zhi Gao

In the context of urbanization, research on urban microclimate and thermal comfort has become one of the themes of eco-city design. Sky view factor (SVF), one of the parameters of urban spatial form, combines multiple morphological information, such as plane opening, aspect ratio, and building density and has an important impact on the urban microclimate. However, there is still no clear research conclusion on the correlation between SVF and microclimate. In this paper, nine Local Climate Zone (LCZ) models are used and typical summer meteorological conditions of Nanjing are applied as an attempt to partially fill this gap. The calculated microclimate and thermal comfort indices include air temperature (AT), surface temperature (ST), relative humidity (RH), wind speed (WS), mean radiant temperature (MRT), and predicted mean vote (PMV). Results show that the local effect of urban morphology on thermal comfort can be retrieved from the use of comprehensive parameters such as SVF (which takes into account the building height, layout, and density) whose distribution in the investigated models showed to be correlated with MRT, so did PMV under low wind speed conditions.


2021 ◽  
Vol 13 (20) ◽  
pp. 4117
Author(s):  
Qiang Chen ◽  
Qianhao Cheng ◽  
Yunhao Chen ◽  
Kangning Li ◽  
Dandan Wang ◽  
...  

Urban building morphology has a significant impact on the urban thermal environment (UTE). The sky view factor (SVF) is an important structure index of buildings and combines height and density attributes. These factors have impact on the land surface temperature (LST). Thus, it is crucial to analyze the relationship between SVF and LST in different spatial-temporal scales. Therefore, we tried to use a building vector database to calculate the SVF, and we used remote sensing thermal infrared band to retrieve LST. Then, we analyzed the influence between SVF and LST in different spatial and temporal scales, and we analyzed the seasonal variation, day–night variation, and the impact of building height and density of the SVF–LST relationship. We selected the core built-up area of Beijing as the study area and analyzed the SVF–LST relationship in four periods in 2018. The temporal experimental results indicated that LST is higher in the obscured areas than in the open areas at nighttime. In winter, the maximum mean LST is in the open areas. The spatial experimental results indicate that the SVF and LST relationship is different in the low SVF region, with 30 m and 90 m pixel scale in the daytime. This may be the shadow cooling effect around the buildings. In addition, we discussed the effects of building height and shading on the SVF–LST relationship, and the experimental results show that the average shading ratio is the largest at 0.38 in the mid-rise building area in winter.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 43
Author(s):  
Qiuxia Xu ◽  
Zhen Xu ◽  
Chayn Sun

(1) Background: Evaluation of wind environments regarding pedestrian comfort may unveil potential hotspot areas, particularly in the context of the rapid urban development in China since the 1990s. (2) Method: With primary schools in Nanjing as case studies, the authors simulated the wind environment of schoolyards with the computational fluid dynamics (CFD) approach and evaluated relevant wind comfort criteria. (3) Results: The study showed that the comfortable wind environment of schoolyards generally expanded in three primary schools in summer and winter, and wind speed and the comfortable wind level decreased in some outdoor schoolyard spaces. The results also indicate that the mean wind speed of the schoolyards did not linearly correlate to the building density either within or outside the schools. An increase in the building height of the primary schools could improve the wind comfort of the schoolyard, but the increased building height in the vicinity may worsen the wind comfort in the schools. Meanwhile, a lift-up or step-shaped building design for schools can improve wind comfort in schoolyards. (4) Conclusions: This study provided simulated results and an approach for urban designers to evaluate and improve the wind environment for school children’s outdoor activities.


Author(s):  
Hong Jin ◽  
Liang Qiao ◽  
Peng Cui

In urban areas, local microclimate is influenced by architectural forms, which will in turn affect human comfort. Taking Daqing as an example, this article studies the microclimate of a university campus in the severe cold area in China. Based on the space features of the streets, we categorize the streets into three types: open type, semi-open type, and street-entry type. Through analysis, this article researches microclimates of the three kinds of streets, the influence of building heating on the surrounding thermal environment, the relationship between streets’ morphology features and microclimate and human comfort (physiological equivalent temperature, PET). By study and analysis, we have the following findings: for open-type streets, the average globe temperatures of streets with different orientations can reach 1.3 °C in winter because of the influence of sidewalk trees. For semi-open-type streets, streets temperature is under the influence of the locating directions of buildings. The maximum air temperature difference among streets with different building arrangements reaches 2.1 °C in winter. For street-entry-type streets, the height–width ratios and orientations of streets are related to the continuity degree of the street interfaces. The building interface acts as a heating element and affect the surrounding thermal environment by heat convection and heat radiation. Analysis demonstrates that heat convection has a more obvious effect on rising surrounding temperature than heat radiation. Buildings with higher heat radiation witness higher globe temperature. For street-entry-type streets and semi-open-type streets, the SVF (sky view factor) and L/C (plane opening rate) of streets are negatively correlated with temperature and PET, but positively correlated with wind speed. If the SVF increases 0.1, the air temperature will reduce 0.1 °C, the wind speed will increase 0.19 m/s, and the PET will reduce 0.7 °C.


Sign in / Sign up

Export Citation Format

Share Document