scholarly journals Study on Passive Heating Involving Firewalls with an Additional Sunlight Room in Rural Residential Buildings

Author(s):  
Simin Yang ◽  
Bart Dewancker ◽  
Shuo Chen

With the growth in China’s economic GDP, energy consumption has increased year by year. The energy demand of rural residential buildings is 223 million tons of standard coal equivalent, accounting for 24% of the national energy demand. Therefore, an energy-saving design for rural residences is necessary. This research took the traditional residences in southern Shaanxi as the research object and combined the cooking methods in southern Shaanxi with solar heating, proposing a sunlight heating system with an additional firewall. The system is composed of a firewall system and a sunlight system. The combination of the two systems prolongs the heating time and makes up for the lack of intermittent heating. The firewall principle involves using the heat generated by cooking through the heat storage and heat release capacity of the wall, and using the principle of heat radiation and convection to increase the indoor temperature. Meanwhile, the principle of the additional sunlight room involves using the external facade of the building to establish an additional sunlight room, by absorbing the heat radiation of the sun and using the principle of heat transfer from the wall. The rapid loss of indoor hot air is avoided, the heating time is prolonged, and part of the heat is retained, thereby improving the heating efficiency. A model was established based on the typical residential model in southern Shaanxi, and the presence or absence of solar radiation on the wall was used as the research variable. Using ANSYS software to simulate the analysis, it is concluded that the firewall–sunlight system can extend the heating time and meet the continuous heating demand, and the heating effect is better than that of the firewall heating system alone. When the walls have solar radiation, the annual heat load reduction rate of the buildings under the new system is 20.21%. When the walls do not have solar radiation, the annual heat load reduction rate of the buildings under the new system is 8.56%.

Author(s):  
Simin Yang ◽  
Bart J. Dewancker ◽  
Shuo Chen

In China, research on winter heating and energy saving for residential buildings mainly focuses on urban residences rather than rural ones. According to the 2018 China Building Energy Consumption Research Report, rural residential buildings emit about 423 million tons of carbon, accounting for 21% of the country’s total carbon emissions. According to the research on China’s greenhouse gas inventory, the main sources of carbon emissions in rural areas are from cooking and the burning of fuelwood and biomass for heating in winter. In this study, the southern Shaanxi area, which is hot in summer and cold in winter, was selected as the research site, and a fire wall system was planned that combines cooking and heating facilities in residential buildings. The system uses the heat generated by cooking and the heat storage capacity of the wall, as well as the principle of thermal radiation and heat convection, to increase the indoor temperature. The advantage is that the hot air generated is mainly concentrated in the inside of the wall, which reduces the direct contact with the cold outdoor air and avoids excess heat loss. In this study, in addition to considering the influence of the cooking fire wall system on the indoor temperature, the difference in the outer wall with or without solar thermal radiation was also considered. The research results show that the use of a cooking fire wall heating system reduces the annual heat load of the building to 440.8318 KW·h, which is a reduction rate of 7.91%. When there is solar radiation on the outer wall, the annual thermal load of the building is reduced by 1104.723 kW·h, and the reduction rate is 19.84%.


2014 ◽  
Vol 935 ◽  
pp. 48-51
Author(s):  
Xin Zhi Gong ◽  
Yasunori Akashi ◽  
Daisuke Sumiyoshi

Primary energy reduction and energy efficiency improvement are important targets to be achieved in every society and in residential buildings in particular. An energy-efficient and low-emissions solid oxide fuel cell (SOFC) cogeneration system is a promising electric and thermal energy generation technology for implementation in future residential buildings. This paper aims to analyze the energy performance in terms of primary energy demand and its reduction rate when SOFC cogeneration system is used in residential buildings. This study outlines SOFC cogeneration system and its simulation method, and then develops a standard family model for simulation under cold weather condition in China and selected Beijing city as an example, and finally compares them with traditional power and heat generation system based on gas and electricity. The results show that SOFC cogeneration system is an energy-efficient alternative power and thermal energy cogeneration technology for cold climatic cities such as Beijing, and can offer a large reduction rate (about 15.8% in winter) of primary energy demand in residential buildings. This study also finds that the significant reductions in primary energy demand of SOFC system result for the periods with air temperature decreasing.


SCITECH Nepal ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. 55-59
Author(s):  
Ramesh Khanal

Underfloor heating system is more suitable for space heating because of its unique temperature gradient profile. If solar radiation can be utilized for heating of water in radiant floor heating system, the cost of electricity can be reduced. Because of the sufficient availability of solar radiation in Kathmandu Valley during winter season, underfloor heating with solar water heating can be a viable technology for residential buildings. So this paper is focused on identifying suitable system/or domestic radiant floor heating system. Compound parabolic concentrator (CPC) water heating system is more suitable for heating water because tracking system is not required and sufficient water temperature can be achieved. It is also found that more studies are necessary to make the system cost effective and suitable for the residential buildings in Kathmandu.


2018 ◽  
Vol 162 ◽  
pp. 05024
Author(s):  
Mousa Mohamed ◽  
Mohammed Almarshadi

The external heat load of residential buildings in summer is the dominant parameter of the required cooling load and refrigeration capacity of air conditioning systems. The consumed energy of air conditioning system is proportional to the outside conditions and intensity of solar radiation. The maximum heat load of building may occur at 3 O’clock PM, although the peak of solar radiation occurs at noon. The construction materials of building is playing an important rolls of heat transmission through buildings outside walls and glazing windows. The walls thermal insulation can be effective in energy conservation by reducing the cooling load and required electrical energy. The building is constructed from common materials with 0~12 cm thermal insulation in outside walls, ceilings, and double layers glazing windows. The building heat loads are calculated for two models of walls. The optimum thickness of thermal insulation is also determined and is found between 6~8 cm for insulation of thermal conductivity of 0.039 W/m.K the energy saving is 50.45% at 6 cm insulation thickness.


2016 ◽  
Vol 15 (2) ◽  
pp. 08
Author(s):  
O. R. S. Rodríguez ◽  
R. N. N. Koury ◽  
A. A. T. Maia

By increasing renewable energy demand, the use of solar energy has been widely investigated over the recent years. Brazil is a privileged country in terms of the levels of receivable solar radiation in almost all over its territory. However, as there are days when there is a deficit in solar energy, because the day be cloudy or rainy days, and for this reason, solar collectors need a support to contribute to the water heating to the desired temperature. In this work, an experimental study of a heat pump operated with R-134a, as an ancillary equipment for a solar water heating system in Belo Horizonte city has been accomplished. For this project, is used a set of electrical resistances for by a power control step, simulate historical annual values of solar radiation. In the results, it was observed that is achieved through the collection of solar energy the temperature of 45°C in the reservoir only in January, and the other eleven months is necessary to use the heat pump to achieve reach that temperature. With the heat pump operating in conditions similar to real conditions gave an average annual consumption of 137.65 kWh and a cost of R$ 60.61.


Author(s):  
Arnulfo Pérez-Pérez ◽  
Jorge Sergio Téllez-Martínez ◽  
Gregorio Hortelano-Capetillo ◽  
Jesús Israel Barraza-Fierro

In this work, the dimensions of a furnace for melting of ferrous alloys were determined. The furnace has an electromagnetic induction heating system. In addition, the parameters of electrical power supply such as frequency and power were calculated. A 5kg cast steel mass with a density of 7.81 kg / dm3 was proposed. This corresponds to a crucible volume of 0.641 dm3. The frequency was obtained from tables, which take into account the diameter of the crucible, and its value was 1 KHz. The energy consumption was determined with the heat required to bring the steel to the temperature of 1740 K, the energy losses through the walls, bottom and top of the crucible. This value was divided between the heating time (30 minutes) and resulted in a power of 4.5 KW. The development of the calculations shows that the induction heating is an efficient process and allows a fast melting of ferrous alloys.


2021 ◽  
Vol 11 (9) ◽  
pp. 3972
Author(s):  
Azin Velashjerdi Farahani ◽  
Juha Jokisalo ◽  
Natalia Korhonen ◽  
Kirsti Jylhä ◽  
Kimmo Ruosteenoja ◽  
...  

The global average air temperature is increasing as a manifestation of climate change and more intense and frequent heatwaves are expected to be associated with this rise worldwide, including northern Europe. Summertime indoor conditions in residential buildings and the health of occupants are influenced by climate change, particularly if no mechanical cooling is used. The energy use of buildings contributes to climate change through greenhouse gas emissions. It is, therefore, necessary to analyze the effects of climate change on the overheating risk and energy demand of residential buildings and to assess the efficiency of various measures to alleviate the overheating. In this study, simulations of dynamic energy and indoor conditions in a new and an old apartment building are performed using two climate scenarios for southern Finland, one for average and the other for extreme weather conditions in 2050. The evaluated measures against overheating included orientations, blinds, site shading, window properties, openable windows, the split cooling unit, and the ventilation cooling and ventilation boost. In both buildings, the overheating risk is high in the current and projected future average climate and, in particular, during exceptionally hot summers. The indoor conditions are occasionally even injurious for the health of occupants. The openable windows and ventilation cooling with ventilation boost were effective in improving the indoor conditions, during both current and future average and extreme weather conditions. However, the split cooling unit installed in the living room was the only studied solution able to completely prevent overheating in all the spaces with a fairly small amount of extra energy usage.


2021 ◽  
Vol 167 (1-2) ◽  
Author(s):  
Jens Ewald ◽  
Thomas Sterner ◽  
Eoin Ó Broin ◽  
Érika Mata

AbstractA zero-carbon society requires dramatic change everywhere including in buildings, a large and politically sensitive sector. Technical possibilities exist but implementation is slow. Policies include many hard-to-evaluate regulations and may suffer from rebound mechanisms. We use dynamic econometric analysis of European macro data for the period 1990–2018 to systematically examine the importance of changes in energy prices and income on residential energy demand. We find a long-run price elasticity of −0.5. The total long-run income elasticity is around 0.9, but if we control for the increase in income that goes towards larger homes and other factors, the income elasticity is 0.2. These findings have practical implications for climate policy and the EU buildings and energy policy framework.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 715
Author(s):  
Cristina Andrade ◽  
Sandra Mourato ◽  
João Ramos

Climate change is expected to influence cooling and heating energy demand of residential buildings and affect overall thermal comfort. Towards this end, the heating (HDD) and cooling (CDD) degree-days along with HDD + CDD were computed from an ensemble of seven high-resolution bias-corrected simulations attained from EURO-CORDEX under two Representative Concentration Pathways (RCP4.5 and RCP8.5). These three indicators were analyzed for 1971–2000 (from E-OBS) and 2011–2040, and 2041–2070, under both RCPs. Results predict a decrease in HDDs most significant under RCP8.5. Conversely, it is projected an increase of CDD values for both scenarios. The decrease in HDDs is projected to be higher than the increase in CDDs hinting to an increase in the energy demand to cool internal environments in Portugal. Statistically significant linear CDD trends were only found for 2041–2070 under RCP4.5. Towards 2070, higher(lower) CDD (HDD and HDD + CDD) anomaly amplitudes are depicted, mainly under RCP8.5. Within the five NUTS II


Sign in / Sign up

Export Citation Format

Share Document