scholarly journals Urbanization Affects Soil Microbiome Profile Distribution in the Russian Arctic Region

Author(s):  
Maria V. Korneykova ◽  
Viacheslav I. Vasenev ◽  
Dmitry A. Nikitin ◽  
Anastasia S. Soshina ◽  
Andrey V. Dolgikh ◽  
...  

Urbanization in the Arctic results in considerable and still poorly known environmental consequences. The effect of urbanization on soil microbiome—an ecosystem component highly sensitive to anthropogenic disturbance—remains overlooked for the Arctic region. The research compared chemical and microbial properties of the natural Podzol soils and urban soils of Murmansk—the largest Arctic city. Particular attention was given to the profile distribution, which is almost completely ignored by most microbial studies. Soil microbiome was investigated by the quantitative indicators based on fluorescence microscopy (microbial biomass) and PCR real-time methods (amount of rRNA genes copies of archaea, bacteria, and fungi). The principal changes in urban soils’ properties compared to the natural references included a shift in pH and an increase in C and nutrients’ contents, especially remarkable for the subsoil. The numbers of rRNA genes copies of archaea, bacteria, and fungi in urban topsoils (106–1010, 109–1010, and 107–109, respectively) were lower than in Podzol; however, the opposite pattern was shown for the subsoil. Similarly, the total microbial biomass in urban topsoils (0.55–0.75 mg g−1) was lower compared to the 1.02 mg g−1 in Podzols, while urban subsoil microbial biomass was 2–2.5 times higher than in the natural conditions. Both for urban and natural soils and throughout the profiles, fungi were dominated by mycelium forms; however, the ratios of mycelium–spores were lower, and the amount of thin mycelium was higher in urban soils than in natural Podzols. Urbanization in the Arctic altered soil morphological and chemical properties and created a new niche for microbial development in urban subsoils; its contribution to biodiversity and nutrient cycling promises to become increasingly important under projected climate change.

Author(s):  
Alexander Myasoedov ◽  
Alexander Myasoedov ◽  
Sergey Azarov ◽  
Sergey Azarov ◽  
Ekaterina Balashova ◽  
...  

Working with satellite data, has long been an issue for users which has often prevented from a wider use of these data because of Volume, Access, Format and Data Combination. The purpose of the Storm Ice Oil Wind Wave Watch System (SIOWS) developed at Satellite Oceanography Laboratory (SOLab) is to solve the main issues encountered with satellite data and to provide users with a fast and flexible tool to select and extract data within massive archives that match exactly its needs or interest improving the efficiency of the monitoring system of geophysical conditions in the Arctic. SIOWS - is a Web GIS, designed to display various satellite, model and in situ data, it uses developed at SOLab storing, processing and visualization technologies for operational and archived data. It allows synergistic analysis of both historical data and monitoring of the current state and dynamics of the "ocean-atmosphere-cryosphere" system in the Arctic region, as well as Arctic system forecasting based on thermodynamic models with satellite data assimilation.


2020 ◽  
pp. 024
Author(s):  
Rym Msadek ◽  
Gilles Garric ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Lauriane Batté ◽  
...  

L'Arctique est la région du globe qui s'est réchauffée le plus vite au cours des trente dernières années, avec une augmentation de la température de surface environ deux fois plus rapide que pour la moyenne globale. Le déclin de la banquise arctique observé depuis le début de l'ère satellitaire et attribué principalement à l'augmentation de la concentration des gaz à effet de serre aurait joué un rôle important dans cette amplification des températures au pôle. Cette fonte importante des glaces arctiques, qui devrait s'accélérer dans les décennies à venir, pourrait modifier les vents en haute altitude et potentiellement avoir un impact sur le climat des moyennes latitudes. L'étendue de la banquise arctique varie considérablement d'une saison à l'autre, d'une année à l'autre, d'une décennie à l'autre. Améliorer notre capacité à prévoir ces variations nécessite de comprendre, observer et modéliser les interactions entre la banquise et les autres composantes du système Terre, telles que l'océan, l'atmosphère ou la biosphère, à différentes échelles de temps. La réalisation de prévisions saisonnières de la banquise arctique est très récente comparée aux prévisions du temps ou aux prévisions saisonnières de paramètres météorologiques (température, précipitation). Les résultats ayant émergé au cours des dix dernières années mettent en évidence l'importance des observations de l'épaisseur de la glace de mer pour prévoir l'évolution de la banquise estivale plusieurs mois à l'avance. Surface temperatures over the Arctic region have been increasing twice as fast as global mean temperatures, a phenomenon known as arctic amplification. One main contributor to this polar warming is the large decline of Arctic sea ice observed since the beginning of satellite observations, which has been attributed to the increase of greenhouse gases. The acceleration of Arctic sea ice loss that is projected for the coming decades could modify the upper level atmospheric circulation yielding climate impacts up to the mid-latitudes. There is considerable variability in the spatial extent of ice cover on seasonal, interannual and decadal time scales. Better understanding, observing and modelling the interactions between sea ice and the other components of the climate system is key for improved predictions of Arctic sea ice in the future. Running operational-like seasonal predictions of Arctic sea ice is a quite recent effort compared to weather predictions or seasonal predictions of atmospheric fields like temperature or precipitation. Recent results stress the importance of sea ice thickness observations to improve seasonal predictions of Arctic sea ice conditions during summer.


2018 ◽  
Vol 35 (4) ◽  
pp. 110-113
Author(s):  
V. A. Tupchienko ◽  
H. G. Imanova

The article deals with the problem of the development of the domestic nuclear icebreaker fleet in the context of the implementation of nuclear logistics in the Arctic. The paper analyzes the key achievements of the Russian nuclear industry, highlights the key areas of development of the nuclear sector in the Far North, and identifies aspects of the development of mechanisms to ensure access to energy on the basis of floating nuclear power units. It is found that Russia is currently a leader in the implementation of the nuclear aspect of foreign policy and in providing energy to the Arctic region.


2020 ◽  
Vol 33 (5) ◽  
pp. 480-489
Author(s):  
L. P. Golobokova ◽  
T. V. Khodzher ◽  
O. N. Izosimova ◽  
P. N. Zenkova ◽  
A. O. Pochyufarov ◽  
...  

2011 ◽  
Author(s):  
Chimerebere Onyekwere Nkwocha ◽  
Evgeny Glebov ◽  
Alexey Zhludov ◽  
Sergey Galantsev ◽  
David Kay

2021 ◽  
Vol 13 (10) ◽  
pp. 1884
Author(s):  
Jingjing Hu ◽  
Yansong Bao ◽  
Jian Liu ◽  
Hui Liu ◽  
George P. Petropoulos ◽  
...  

The acquisition of real-time temperature and relative humidity (RH) profiles in the Arctic is of great significance for the study of the Arctic’s climate and Arctic scientific research. However, the operational algorithm of Fengyun-3D only takes into account areas within 60°N, the innovation of this work is that a new technique based on Neural Network (NN) algorithm was proposed, which can retrieve these parameters in real time from the Fengyun-3D Hyperspectral Infrared Radiation Atmospheric Sounding (HIRAS) observations in the Arctic region. Considering the difficulty of obtaining a large amount of actual observation (such as radiosonde) in the Arctic region, collocated ERA5 data from European Centre for Medium-Range Weather Forecasts (ECMWF) and HIRAS observations were used to train the neural networks (NNs). Brightness temperature and training targets were classified using two variables: season (warm season and cold season) and surface type (ocean and land). NNs-based retrievals were compared with ERA5 data and radiosonde observations (RAOBs) independent of the NN training sets. Results showed that (1) the NNs retrievals accuracy is generally higher on warm season and ocean; (2) the root-mean-square error (RMSE) of retrieved profiles is generally slightly higher in the RAOB comparisons than in the ERA5 comparisons, but the variation trend of errors with height is consistent; (3) the retrieved profiles by the NN method are closer to ERA5, comparing with the AIRS products. All the results demonstrated the potential value in time and space of NN algorithm in retrieving temperature and relative humidity profiles of the Arctic region from HIRAS observations under clear-sky conditions. As such, the proposed NN algorithm provides a valuable pathway for retrieving reliably temperature and RH profiles from HIRAS observations in the Arctic region, providing information of practical value in a wide spectrum of practical applications and research investigations alike.All in all, our work has important implications in broadening Fengyun-3D’s operational implementation range from within 60°N to the Arctic region.


Marine Drugs ◽  
2011 ◽  
Vol 9 (11) ◽  
pp. 2423-2437 ◽  
Author(s):  
Samuel Abbas ◽  
Michelle Kelly ◽  
John Bowling ◽  
James Sims ◽  
Amanda Waters ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Jussi Hovikoski ◽  
Michael B. W. Fyhn ◽  
Henrik Nøhr-Hansen ◽  
John R. Hopper ◽  
Steven Andrews ◽  
...  

AbstractThe paleoenvironmental and paleogeographic development of the Norwegian–Greenland seaway remains poorly understood, despite its importance for the oceanographic and climatic conditions of the Paleocene–Eocene greenhouse world. Here we present analyses of the sedimentological and paleontological characteristics of Paleocene–Eocene deposits (between 63 and 47 million years old) in northeast Greenland, and investigate key unconformities and volcanic facies observed through seismic reflection imaging in offshore basins. We identify Paleocene–Eocene uplift that culminated in widespread regression, volcanism, and subaerial exposure during the Ypresian. We reconstruct the paleogeography of the northeast Atlantic–Arctic region and propose that this uplift led to fragmentation of the Norwegian–Greenland seaway during this period. We suggest that the seaway became severely restricted between about 56 and 53 million years ago, effectively isolating the Arctic from the Atlantic ocean during the Paleocene–Eocene thermal maximum and the early Eocene.


Sign in / Sign up

Export Citation Format

Share Document