scholarly journals Combined Effect of Temperature and Relative Humidity on the Survival of Salmonella Isolates on Stainless Steel Coupons

Author(s):  
Amreen Bashir ◽  
Peter A. Lambert ◽  
Yvonne Stedman ◽  
Anthony C. Hilton

The survival on stainless steel of ten Salmonella isolates from food factory, clinical and veterinary sources was investigated. Stainless steel coupons inoculated with Salmonella were dried and stored at a range of temperatures and relative humidity (RH) levels representing factory conditions. Viability was determined from 1 to 22 days. Survival curves obtained for most isolates and storage conditions displayed exponential inactivation described by a log-linear model. Survival was affected by environmental temperatures and RH with decimal reduction times (DRTs) ranging from <1 day to 18 days. At 25 °C/15% RH, all isolates survived at levels of 103 to 105 cfu for >22 days. Furthermore, temperatures and RH independently influenced survival on stainless steel; increasing temperatures between 10 °C and 37 °C and increasing RH levels from 30–70% both decreased the DRT values. Survival curves displaying a shoulder followed by exponential death were obtained for three isolates at 10 °C/70% RH. Inactivation kinetics for these were described by modified Weibull models, suggesting that cumulative injury occurs before cellular inactivation. This study highlights the need to control temperature and RH to limit microbial persistence in the food manufacturing environment, particularly during the factory shut-down period for cleaning when higher temperature/humidity levels could be introduced.

2019 ◽  
Vol 25 (6) ◽  
pp. 890-897
Author(s):  
Achisa C Mecha ◽  
Maurice S Onyango ◽  
Aoyi Ochieng ◽  
Maggy NB Momba

Microbial water pollution is a key concern leading to waterborne diseases. This study evaluated the disinfection of wastewater using ozonation. The following aspects were investigated: inactivation efficiency against <i>Escherichia coli, Salmonella</i> species, <i>Shigella</i> species, and <i>Vibrio cholerae</i>; modelling of inactivation kinetics using disinfection models; and evaluation of microbial regrowth studies. 99% bacterial inactivation was obtained within 15 min, irrespective of the water matrix, showing the strong oxidizing potential of ozone. The disinfection data were fitted into the log-linear and Weibull models. The survival curves were non-linear and fitted the Weibull model (fractional bias and normalized mean square error equal to 0.0), especially at high bacterial concentrations (10<sup>6</sup> CFU/mL). The inactivation occurred in two stages: an initial rapid stage (15 min) and a final slow stage exhibiting a tailing mechanism (15-45 min) probably as a result of the self-defence mechanisms adopted by the bacteria to limit oxidative stress. Considering the pattern of survival curves, no significant differences (<i>p</i> > 0.05) were observed among the four tested bacterial species; thus showing that ozone was effective against all the bacteria tested. There was minimal bacterial regrowth in the treated samples 24 h after ozone disinfection with reactivation values of 0-5% obtained.


Plant Disease ◽  
2017 ◽  
Vol 101 (4) ◽  
pp. 562-567 ◽  
Author(s):  
Shiling Sun ◽  
Sen Lian ◽  
Shulian Feng ◽  
Xiangli Dong ◽  
Caixian Wang ◽  
...  

Cucumber downy mildew, caused by Pseudoperonospora cubensis, is a worldwide disease that causes severe damage to cucumber production. The effects of temperature and moisture on sporulation and infection by P. cubensis were investigated by inoculating cucumber (‘85F12’) cotyledons with sporangia and examining the sporangia produced on the inoculated cotyledons under artificially controlled environments. The result showed that the temperature required for sporangium infection by P. cubensis and sporulation of the downy mildew lesions occurred at 5 to 30°C. The optimal temperature estimated by the fitted model was 18.8°C for sporangium infection and 16.2°C for downy mildew lesion sporulation. The pathogen formed plenty of sporangia when disease cotyledons were wetted or in the environment with relative humidity = 100%. The downy mildew lesions produced only a few sporangia when placed in the environment with relative humidity = 90%. The inoculated cotyledons, which incubated for 5 days at about 20°C in a dry greenhouse, began to form sporangia 4 h after being wetted when incubated in darkness. The quantity of sporangia produced on the downy mildew lesions increased with extension of incubating period (within 12 h), and the relationship between produced sporangia and the incubation period at 15, 20, and 25°C can be described by three exponential models. The observed minimum wetness durations (MWD) required for sporangia to complete the infection process and cause downy mildew were 12, 4, 2.5, 1, 1, and 6 h for 5, 10, 15, 20, 25, and 30°C, respectively. The effect of temperature and wetness duration on infection by sporangia of P. cubensis can be described by the modified Weibull model. The shortest MWD was 0.45 h, about 27 min, estimated by model. The experimental data and models will be helpful in the development of forecasting models and effective control systems for cucumber downy mildew.


2017 ◽  
Vol 80 (12) ◽  
pp. 1999-2005 ◽  
Author(s):  
Hongye Wang ◽  
Muthu Dharmasena ◽  
Zhao Chen ◽  
Xiuping Jiang

ABSTRACT Dairy compost with 20, 30, or 40% moisture content (MC) was inoculated with a mixture of six non-O157 Shiga toxin–producing Escherichia coli (STEC) serovars at a final concentration of 5.1 log CFU/g and then stored at 22 and 4°C for 125 days. Six storage conditions—4°C and 20% MC, 4°C and 30% MC, 4°C and 40% MC, 22°C and 20% MC, 22°C and 30% MC, and 22°C and 40% MC—were investigated for the persistence of non-O157 STEC in the dairy compost. During the entire storage, fluctuations in indigenous mesophilic bacterial levels were observed within the first 28 days of storage. After inoculation, the non-O157 STEC population increased 0.69 and 0.79 log CFU/g in the dairy compost with 30 and 40% MC at 22°C within the first day, respectively; for all other storage conditions, the pathogen population decreased rapidly. After the 125-day storage, the reductions of non-O157 STEC for 4°C and 20% MC, 4°C and 30% MC, 4°C and 40% MC, 22°C and 20% MC, 22°C and 30% MC, and 22°C and 40% MC storage conditions were &gt;4.52, &gt;4.55, 3.89, &gt;4.61, 3.60, and 3.17 log CFU/g, respectively. All the survival curves showed an extensive tail, indicating non-O157 STEC can survive at least for 125 days in the dairy compost. The survival data were analyzed with log-linear with tailing and Weibull models. Compared with the log-linear with tailing model, the Weibull model was found to be a better choice for predicting the survival of non-O157 STEC in dairy compost owing to a high overall R2 value (0.8738 to 0.9909). The decay rate of non-O157 STEC was higher in dairy compost stored at 4°C compared with at 22°C, and the same trend was found for the compost with 40% MC versus 20% MC. In addition, two non-O157 STEC serotypes (STEC O145 and O45) were detected on the last day of the longitudinal study and may deserve special attention in the Big 6 STEC group. Our results have provided scientific data for risk assessment of the microbiological safety of dairy compost to control non-O157 STEC during subsequent storage of dairy compost.


2010 ◽  
Vol 77 (8) ◽  
pp. 2640-2647 ◽  
Author(s):  
Lixiong Li ◽  
Chris L. Wilbur ◽  
Kathryn L. Mintz

ABSTRACTA kinetic model was established for the inactivation of endotoxins in water at temperatures ranging from 210°C to 270°C and a pressure of 6.2 × 106Pa. Data were generated using a bench scale continuous-flow reactor system to process feed water spiked with endotoxin standard (Escherichia coliO113:H10). Product water samples were collected and quantified by theLimulusamebocyte lysate assay. At 250°C, 5-log endotoxin inactivation was achieved in about 1 s of exposure, followed by a lower inactivation rate. This non-log-linear pattern is similar to reported trends in microbial survival curves. Predictions and parameters of several non-log-linear models are presented. In the fast-reaction zone (3- to 5-log reduction), the Arrhenius rate constant fits well at temperatures ranging from 120°C to 250°C on the basis of data from this work and the literature. Both biphasic and modified Weibull models are comparable to account for both the high and low rates of inactivation in terms of prediction accuracy and the number of parameters used. A unified representation of thermal resistance curves for a 3-log reduction and a 3Dvalue associated with endotoxin inactivation and microbial survival, respectively, is presented.


2007 ◽  
Vol 136 (1) ◽  
pp. 56-64 ◽  
Author(s):  
R. M. D'SOUZA ◽  
G. HALL ◽  
N. G. BECKER

SUMMARYThis study compares the seasonality of rotavirus diarrhoeal hospital admissions and its relationship to climatic factors across three Australian cities. Weekly admission of rotavirus diarrhoea (1993–2003) in children aged <5 years and weekly average temperature and relative humidity for each city were modelled using a log-linear model with a cubic trend and season. Interactions were included to test for differences in the effect of temperature and humidity between seasons and between cities. Admissions of rotavirus diarrhoea peaked in winter and spring and were lowest in summer. Higher temperature and humidity in the previous week were associated with a decrease in rotavirus diarrhoeal admissions in three cities. The effects of both temperature and humidity on rotavirus admissions in Brisbane differed across seasons. Strategies to combat outbreaks of rotavirus diarrhoea should take climatic factors and seasonal effects into consideration to plan for the excess seasonal hospital admissions.


2017 ◽  
Vol 80 (12) ◽  
pp. 2014-2021 ◽  
Author(s):  
Evann L. Dufort ◽  
Jonathan Sogin ◽  
Mark R. Etzel ◽  
Barbara H. Ingham

ABSTRACT Thermal inactivation kinetics for single strains of Shiga toxin–producing Escherichia coli (STEC), Listeria monocytogenes, and Salmonella enterica were measured in acidified tryptic soy broth (TSB; pH 4.5) heated at 54°C. Inactivation curves also were measured for single-pathogen five-strain cocktails of E. coli O157:H7, L. monocytogenes, and S. enterica heated in tomato purée (pH 4.5) at 52, 54, 56, and 58°C. Inactivation curves were fit using log-linear and nonlinear (Weibull) models. The Weibull model yields the time for a 5-log reduction (t*) and a curve shape parameter (β). Decimal reduction times (D-values) and thermal resistance constants (z-values) from the two models were compared by defining t* = 5D* for the Weibull model. When the log-linear and Weibull models match at the 5-log reduction time, then t* = 5D* = 5D and D = D*. In 18 of 20 strains heated in acidified TSB, D and D* for the two models were not significantly different, although nonlinearity was observed in 35 of 60 trials. Similarly, in 51 of 52 trials for pathogen cocktails heated in tomato purée, D and D* were not significantly different, although nonlinearity was observed in 31% of trials. At a given temperature, D-values for S. enterica &lt;&lt; L. monocytogenes &lt; E. coli O157:H7 in tomato purée (pH 4.5). When using the two models, z-values calculated from the D-values were not significantly different for a given pathogen. Across all pathogens, z-values for E. coli O157:H7 and S. enterica were not different but were significantly lower than the z-values for L. monocytogenes. These results are useful for supporting process filings for tomato-based acidified food products with pH 4.5 and below and are relevant to small processors of tomato-based acidified canned foods who do not have the resources to conduct research on and validate pathogen lethality.


2021 ◽  
Vol 12 ◽  
Author(s):  
Runan Yan ◽  
Gabriella Pinto ◽  
Rebecca Taylor-Roseman ◽  
Karen Cogan ◽  
Greg D’Alesandre ◽  
...  

Cocoa roasting produces and enhances distinct flavor of chocolate and acts as a critical control point for inactivation of foodborne pathogens in chocolate production. In this study, the inactivation kinetics of Salmonella enterica subsp. enterica serotype Oranienburg strain was assessed on whole cocoa beans using roasting protocols relevant to the fine chocolate industry. Beans were inoculated with 107–108 log10 CFU/bean of Salmonella Oranienburg and roasted at 100–150°C for 2–100 min. A greater than 5 log10 reduction of S. Oranienburg was experimentally achieved after 10-min roasting at 150°C. Data were fitted using log-linear and Weibull models. The log-linear models indicated that the roasting times (D) needed to achieve a decimal reduction of Salmonella at 100, 110, 115, 120, 130, and 140°C were 33.34, 18.57, 12.92, 10.50, 4.20, and 1.90 min, respectively. A Weibull model indicated a decrease in the Salmonella inactivation rate over time (β &lt; 1). Statistical analysis indicated that the Weibull model fitted the data better compared to a log-linear model. These data demonstrate the efficacy of cocoa roasting in inactivation of Salmonella and may be used to guide food safety decision-making.


2002 ◽  
pp. 28-32
Author(s):  
Edina Veres ◽  
Mária Borbély ◽  
Zoltán Győri ◽  
János Kátai

Corn samples harvested in 1997, 1998 and 1999 from different soil types were stored at different conditions (temperature, moisture content, state of kernels) for six months. The Fusarium contamination was examined by plate dilution method and the amount of mycotoxins (F-2, T-2, HT-2, DON, DAS) were determined applying HPLC method immediately after harvesting and in the third and sixth month of storage. The aim of our study was to find correlation between the ecological factors, storage conditions and the examined parameters mentioned above, as well as to prove them statistically. According to the examinations carried out after harvesting we could state that the soil type had no effect on the parameters. Analysing the effect of the years we found considerable differences. The Fusarium infection of corn samples in 1998, while the toxin contamination in 1999 was the highest. The results of storage experiment show that year (number of microscopic fungi, F-2, T-2, HT-2, DAS and total toxin content) and moisture content of kernels (F-2, T-2, and total toxin content) have a significant effect on the examined parameters. We could prove the effect of temperature on the T-2 content (samples with natural moisture content) and DON content (samples with 14% moisture content). Higher values were found at higher temperature storage. The ratio of damaged kernels influenced the DON concentration in the non- wetted samples and the number of microscopic fungi in the wetted samples.


2019 ◽  
Vol 82 (9) ◽  
pp. 1465-1471 ◽  
Author(s):  
JOSHUA B. GURTLER ◽  
VIJAY K. JUNEJA ◽  
DEANA R. JONES ◽  
ANUJ PUROHIT

ABSTRACT The heat resistance of three heat-resistant strains of Salmonella was determined in whole liquid egg (WLE). Inoculated samples in glass capillary tubes were completely immersed in a circulating water bath and held at 56, 58, 60, 62, and 64°C for predetermined lengths of time. The recovery medium was tryptic soy agar with 0.1% sodium pyruvate and 50 ppm of nalidixic acid. Survival data were fitted using log-linear, log-linear with shoulder, and Weibull models using GInaFiT version 1.7. Based on the R2 and mean square error, the log-linear with shoulder and Weibull models consistently produced a better fit to Salmonella survival curves obtained at these temperatures. Contaminated WLE must be heated at 56, 60, and 64°C for at least 33.2, 2.7, and 0.31 min, respectively, to achieve a 4-log reduction of Salmonella; 39.0, 3.1, and 0.34 min, respectively, for a 5-log reduction; and 45.0, 3.5, and 0.39 min, respectively, for a 6-log reduction. The z-values calculated from the D-values were 3.67 and 4.18°C for the log-linear with shoulder and Weibull models, respectively. Thermal death times presented in this study will be beneficial for WLE distributors and regulatory agencies when designing pasteurization processes to effectively eliminate Salmonella in WLE, thereby ensuring the microbiological safety of the product.


2009 ◽  
Vol 75 (22) ◽  
pp. 6998-7005 ◽  
Author(s):  
G. Stone ◽  
B. Chapman ◽  
D. Lovell

ABSTRACT In the commercial food industry, demonstration of microbiological safety and thermal process equivalence often involves a mathematical framework that assumes log-linear inactivation kinetics and invokes concepts of decimal reduction time (DT ), z values, and accumulated lethality. However, many microbes, particularly spores, exhibit inactivation kinetics that are not log linear. This has led to alternative modeling approaches, such as the biphasic and Weibull models, that relax strong log-linear assumptions. Using a statistical framework, we developed a novel log-quadratic model, which approximates the biphasic and Weibull models and provides additional physiological interpretability. As a statistical linear model, the log-quadratic model is relatively simple to fit and straightforwardly provides confidence intervals for its fitted values. It allows a DT -like value to be derived, even from data that exhibit obvious “tailing.” We also showed how existing models of non-log-linear microbial inactivation, such as the Weibull model, can fit into a statistical linear model framework that dramatically simplifies their solution. We applied the log-quadratic model to thermal inactivation data for the spore-forming bacterium Clostridium botulinum and evaluated its merits compared with those of popular previously described approaches. The log-quadratic model was used as the basis of a secondary model that can capture the dependence of microbial inactivation kinetics on temperature. This model, in turn, was linked to models of spore inactivation of Sapru et al. and Rodriguez et al. that posit different physiological states for spores within a population. We believe that the log-quadratic model provides a useful framework in which to test vitalistic and mechanistic hypotheses of inactivation by thermal and other processes.


Sign in / Sign up

Export Citation Format

Share Document