scholarly journals TriangleConv: A Deep Point Convolutional Network for Recognizing Building Shapes in Map Space

2021 ◽  
Vol 10 (10) ◽  
pp. 687
Author(s):  
Chun Liu ◽  
Yaohui Hu ◽  
Zheng Li ◽  
Junkui Xu ◽  
Zhigang Han ◽  
...  

The classification and recognition of the shapes of buildings in map space play an important role in spatial cognition, cartographic generalization, and map updating. As buildings in map space are often represented as the vector data, research was conducted to learn the feature representations of the buildings and recognize their shapes based on graph neural networks. Due to the principles of graph neural networks, it is necessary to construct a graph to represent the adjacency relationships between the points (i.e., the vertices of the polygons shaping the buildings), and extract a list of geometric features for each point. This paper proposes a deep point convolutional network to recognize building shapes, which executes the convolution directly on the points of the buildings without constructing the graphs and extracting the geometric features of the points. A new convolution operator named TriangleConv was designed to learn the feature representations of each point by aggregating the features of the point and the local triangle constructed by the point and its two adjacency points. The proposed method was evaluated and compared with related methods based on a dataset consisting of 5010 vector buildings. In terms of accuracy, macro-precision, macro-recall, and macro-F1, the results show that the proposed method has comparable performance with typical graph neural networks of GCN, GAT, and GraphSAGE, and point cloud neural networks of PointNet, PointNet++, and DGCNN in the task of recognizing and classifying building shapes in map space.

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1247
Author(s):  
Lydia Tsiami ◽  
Christos Makropoulos

Prompt detection of cyber–physical attacks (CPAs) on a water distribution system (WDS) is critical to avoid irreversible damage to the network infrastructure and disruption of water services. However, the complex interdependencies of the water network’s components make CPA detection challenging. To better capture the spatiotemporal dimensions of these interdependencies, we represented the WDS as a mathematical graph and approached the problem by utilizing graph neural networks. We presented an online, one-stage, prediction-based algorithm that implements the temporal graph convolutional network and makes use of the Mahalanobis distance. The algorithm exhibited strong detection performance and was capable of localizing the targeted network components for several benchmark attacks. We suggested that an important property of the proposed algorithm was its explainability, which allowed the extraction of useful information about how the model works and as such it is a step towards the creation of trustworthy AI algorithms for water applications. Additional insights into metrics commonly used to rank algorithm performance were also presented and discussed.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Si Zhang ◽  
Hanghang Tong ◽  
Jiejun Xu ◽  
Ross Maciejewski

Abstract Graphs naturally appear in numerous application domains, ranging from social analysis, bioinformatics to computer vision. The unique capability of graphs enables capturing the structural relations among data, and thus allows to harvest more insights compared to analyzing data in isolation. However, it is often very challenging to solve the learning problems on graphs, because (1) many types of data are not originally structured as graphs, such as images and text data, and (2) for graph-structured data, the underlying connectivity patterns are often complex and diverse. On the other hand, the representation learning has achieved great successes in many areas. Thereby, a potential solution is to learn the representation of graphs in a low-dimensional Euclidean space, such that the graph properties can be preserved. Although tremendous efforts have been made to address the graph representation learning problem, many of them still suffer from their shallow learning mechanisms. Deep learning models on graphs (e.g., graph neural networks) have recently emerged in machine learning and other related areas, and demonstrated the superior performance in various problems. In this survey, despite numerous types of graph neural networks, we conduct a comprehensive review specifically on the emerging field of graph convolutional networks, which is one of the most prominent graph deep learning models. First, we group the existing graph convolutional network models into two categories based on the types of convolutions and highlight some graph convolutional network models in details. Then, we categorize different graph convolutional networks according to the areas of their applications. Finally, we present several open challenges in this area and discuss potential directions for future research.


2020 ◽  
Vol 18 ◽  
Author(s):  
Dasheng Chen ◽  
Leyi Wei

Background:: Both DNAs and proteins are important components of living organisms. DNA-binding proteins are a kind of helicase, which is a protein specifically responsible for binding to DNA single stranded regions. It plays a key role in the function of various biomolecules. Although there are some prediction methods for the DNA-binding proteins sequences, the use of graph neural networks in this research is still limited. Objective:: In this article, using graph neural networks, we developed a novel predictor GCN-DBP for protein classification prediction. Method:: Each protein sequence is treated as a document in this study, and then document is segmented according to the concept of k-mer. This research aims to use document word relationships and word co-occurrence as a corpus to construct a text graph. Then, the predictor learns protein sequence information by two-layer graph convolutional networks. Results:: In order to compare the proposed method with other four existing methods, we have conducted more experiments. Finally, we tested GCN-DBP on the independent data set PDB2272. Its accuracy reached 64.17% and MCC reached 28.32%. Conclusion:: The results show that the proposed method is superior to the other four methods and will be a useful tool for protein classification.


2020 ◽  
Author(s):  
Artur Schweidtmann ◽  
Jan Rittig ◽  
Andrea König ◽  
Martin Grohe ◽  
Alexander Mitsos ◽  
...  

<div>Prediction of combustion-related properties of (oxygenated) hydrocarbons is an important and challenging task for which quantitative structure-property relationship (QSPR) models are frequently employed. Recently, a machine learning method, graph neural networks (GNNs), has shown promising results for the prediction of structure-property relationships. GNNs utilize a graph representation of molecules, where atoms correspond to nodes and bonds to edges containing information about the molecular structure. More specifically, GNNs learn physico-chemical properties as a function of the molecular graph in a supervised learning setup using a backpropagation algorithm. This end-to-end learning approach eliminates the need for selection of molecular descriptors or structural groups, as it learns optimal fingerprints through graph convolutions and maps the fingerprints to the physico-chemical properties by deep learning. We develop GNN models for predicting three fuel ignition quality indicators, i.e., the derived cetane number (DCN), the research octane number (RON), and the motor octane number (MON), of oxygenated and non-oxygenated hydrocarbons. In light of limited experimental data in the order of hundreds, we propose a combination of multi-task learning, transfer learning, and ensemble learning. The results show competitive performance of the proposed GNN approach compared to state-of-the-art QSPR models making it a promising field for future research. The prediction tool is available via a web front-end at www.avt.rwth-aachen.de/gnn.</div>


2020 ◽  
Author(s):  
Zheng Lian ◽  
Jianhua Tao ◽  
Bin Liu ◽  
Jian Huang ◽  
Zhanlei Yang ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3848
Author(s):  
Wei Cui ◽  
Meng Yao ◽  
Yuanjie Hao ◽  
Ziwei Wang ◽  
Xin He ◽  
...  

Pixel-based semantic segmentation models fail to effectively express geographic objects and their topological relationships. Therefore, in semantic segmentation of remote sensing images, these models fail to avoid salt-and-pepper effects and cannot achieve high accuracy either. To solve these problems, object-based models such as graph neural networks (GNNs) are considered. However, traditional GNNs directly use similarity or spatial correlations between nodes to aggregate nodes’ information, which rely too much on the contextual information of the sample. The contextual information of the sample is often distorted, which results in a reduction in the node classification accuracy. To solve this problem, a knowledge and geo-object-based graph convolutional network (KGGCN) is proposed. The KGGCN uses superpixel blocks as nodes of the graph network and combines prior knowledge with spatial correlations during information aggregation. By incorporating the prior knowledge obtained from all samples of the study area, the receptive field of the node is extended from its sample context to the study area. Thus, the distortion of the sample context is overcome effectively. Experiments demonstrate that our model is improved by 3.7% compared with the baseline model named Cluster GCN and 4.1% compared with U-Net.


AI ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 195-208
Author(s):  
Gabriel Dahia ◽  
Maurício Pamplona Segundo

We propose a method that can perform one-class classification given only a small number of examples from the target class and none from the others. We formulate the learning of meaningful features for one-class classification as a meta-learning problem in which the meta-training stage repeatedly simulates one-class classification, using the classification loss of the chosen algorithm to learn a feature representation. To learn these representations, we require only multiclass data from similar tasks. We show how the Support Vector Data Description method can be used with our method, and also propose a simpler variant based on Prototypical Networks that obtains comparable performance, indicating that learning feature representations directly from data may be more important than which one-class algorithm we choose. We validate our approach by adapting few-shot classification datasets to the few-shot one-class classification scenario, obtaining similar results to the state-of-the-art of traditional one-class classification, and that improves upon that of one-class classification baselines employed in the few-shot setting.


Sign in / Sign up

Export Citation Format

Share Document