scholarly journals An Object-Based Image Analysis Workflow for Monitoring Shallow-Water Aquatic Vegetation in Multispectral Drone Imagery

2018 ◽  
Vol 7 (8) ◽  
pp. 294 ◽  
Author(s):  
Dominique Chabot ◽  
Christopher Dillon ◽  
Adam Shemrock ◽  
Nicholas Weissflog ◽  
Eric Sager

High-resolution drone aerial surveys combined with object-based image analysis are transforming our capacity to monitor and manage aquatic vegetation in an era of invasive species. To better exploit the potential of these technologies, there is a need to develop more efficient and accessible analysis workflows and focus more efforts on the distinct challenge of mapping submerged vegetation. We present a straightforward workflow developed to monitor emergent and submerged invasive water soldier (Stratiotes aloides) in shallow waters of the Trent-Severn Waterway in Ontario, Canada. The main elements of the workflow are: (1) collection of radiometrically calibrated multispectral imagery including a near-infrared band; (2) multistage segmentation of the imagery involving an initial separation of above-water from submerged features; and (3) automated classification of features with a supervised machine-learning classifier. The approach yielded excellent classification accuracy for emergent features (overall accuracy = 92%; kappa = 88%; water soldier producer’s accuracy = 92%; user’s accuracy = 91%) and good accuracy for submerged features (overall accuracy = 84%; kappa = 75%; water soldier producer’s accuracy = 71%; user’s accuracy = 84%). The workflow employs off-the-shelf graphical software tools requiring no programming or coding, and could therefore be used by anyone with basic GIS and image analysis skills for a potentially wide variety of aquatic vegetation monitoring operations.

2021 ◽  
Vol 13 (4) ◽  
pp. 830
Author(s):  
Adam R. Benjamin ◽  
Amr Abd-Elrahman ◽  
Lyn A. Gettys ◽  
Hartwig H. Hochmair ◽  
Kyle Thayer

This study investigates the use of unmanned aerial systems (UAS) mapping for monitoring the efficacy of invasive aquatic vegetation (AV) management on a floating-leaved AV species, Nymphoides cristata (CFH). The study site consists of 48 treatment plots (TPs). Based on six unique flights over two days at three different flight altitudes while using both a multispectral and RGB sensor, accuracy assessment of the final object-based image analysis (OBIA)-derived classified images yielded overall accuracies ranging from 89.6% to 95.4%. The multispectral sensor was significantly more accurate than the RGB sensor at measuring CFH areal coverage within each TP only with the highest multispectral, spatial resolution (2.7 cm/pix at 40 m altitude). When measuring response in the AV community area between the day of treatment and two weeks after treatment, there was no significant difference between the temporal area change from the reference datasets and the area changes derived from either the RGB or multispectral sensor. Thus, water resource managers need to weigh small gains in accuracy from using multispectral sensors against other operational considerations such as the additional processing time due to increased file sizes, higher financial costs for equipment procurements, and longer flight durations in the field when operating multispectral sensors.


2017 ◽  
Vol 5 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Dominique Chabot ◽  
Christopher Dillon ◽  
Oumer Ahmed ◽  
Adam Shemrock

Small unmanned aircraft systems (UAS) combined with automated image analysis may provide an efficient alternative or complement to labour-intensive boat-based monitoring of invasive aquatic vegetation. A small mapping drone was assessed for collecting high-resolution (≤5 cm/pixel) true-colour and near-infrared imagery revealing the distribution of invasive water soldier (Stratiotes aloides) in the Trent–Severn Waterway, Ontario (Canada). We further evaluated the capacity of an object-based image analysis approach based on the Random Forests classification algorithm to map features in the imagery, chiefly emergent and submerged water soldier colonies. The imagery contained flaws and inconsistencies resulting from data collection in suboptimal weather conditions that likely negatively impacted classification performance. Nevertheless, our best-performing classification had a producer’s and user’s accuracy for water soldier of 81% and 74%, respectively, an overall accuracy of 78%, and a kappa value of 61%, indicating “substantial” accuracy. This trial provides an instructive case study on results achieved in a “real-world” application of a UAS for environmental monitoring, notably characterized by time constraints for data collection and analysis. Beyond avoiding data collection in unfavourable weather conditions, adaptations of the image segmentation process and use of a true discrete-band multispectral camera may help to improve classification accuracy, particularly of submerged vegetation.


2017 ◽  
Vol 17 (10) ◽  
pp. 1823-1836 ◽  
Author(s):  
Karolina Korzeniowska ◽  
Yves Bühler ◽  
Mauro Marty ◽  
Oliver Korup

Abstract. Snow avalanches are destructive mass movements in mountain regions that continue to claim lives and cause infrastructural damage and traffic detours. Given that avalanches often occur in remote and poorly accessible steep terrain, their detection and mapping is extensive and time consuming. Nonetheless, systematic avalanche detection over large areas could help to generate more complete and up-to-date inventories (cadastres) necessary for validating avalanche forecasting and hazard mapping. In this study, we focused on automatically detecting avalanches and classifying them into release zones, tracks, and run-out zones based on 0.25 m near-infrared (NIR) ADS80-SH92 aerial imagery using an object-based image analysis (OBIA) approach. Our algorithm takes into account the brightness, the normalised difference vegetation index (NDVI), the normalised difference water index (NDWI), and its standard deviation (SDNDWI) to distinguish avalanches from other land-surface elements. Using normalised parameters allows applying this method across large areas. We trained the method by analysing the properties of snow avalanches at three 4 km−2 areas near Davos, Switzerland. We compared the results with manually mapped avalanche polygons and obtained a user's accuracy of > 0.9 and a Cohen's kappa of 0.79–0.85. Testing the method for a larger area of 226.3 km−2, we estimated producer's and user's accuracies of 0.61 and 0.78, respectively, with a Cohen's kappa of 0.67. Detected avalanches that overlapped with reference data by > 80 % occurred randomly throughout the testing area, showing that our method avoids overfitting. Our method has potential for large-scale avalanche mapping, although further investigations into other regions are desirable to verify the robustness of our selected thresholds and the transferability of the method.


2019 ◽  
Vol 11 (19) ◽  
pp. 2308 ◽  
Author(s):  
Micha Silver ◽  
Arti Tiwari ◽  
Arnon Karnieli

Vegetation state is usually assessed by calculating vegetation indices (VIs) derived from remote sensing systems where the near infrared (NIR) band is used to enhance the vegetation signal. However VIs are pixel-based and require both visible and NIR bands. Yet, most archived photographs were obtained with cameras that record only the three visible bands. Attempts to construct VIs with the visible bands alone have shown only limited success, especially in drylands. The current study identifies vegetation patches in the hyperarid Israeli desert using only the visible bands from aerial photographs by adapting an alternative geospatial object-based image analysis (GEOBIA) routine, together with recent improvements in preprocessing. The preprocessing step selects a balanced threshold value for image segmentation using unsupervised parameter optimization. Then the images undergo two processes: segmentation and classification. After tallying modeled vegetation patches that overlap true tree locations, both true positive and false positive rates are obtained from the classification and receiver operating characteristic (ROC) curves are plotted. The results show successful identification of vegetation patches in multiple zones from each study area, with area under the ROC curve values between 0.72 and 0.83.


2021 ◽  
Vol 13 (15) ◽  
pp. 2913
Author(s):  
Mariacristina Prampolini ◽  
Lorenzo Angeletti ◽  
Giorgio Castellan ◽  
Valentina Grande ◽  
Tim Le Bas ◽  
...  

A huge amount of seabed acoustic reflectivity data has been acquired from the east to the west side of the southern Adriatic Sea (Mediterranean Sea) in the last 18 years by CNR-ISMAR. These data have been used for geological, biological and habitat mapping purposes, but a single and consistent interpretation of them has never been carried out. Here, we aimed at coherently interpreting acoustic data images of the seafloor to produce a benthic habitat map of the southern Adriatic Sea showing the spatial distribution of substrates and biological communities within the basin. The methodology here applied consists of a semi-automated classification of acoustic reflectivity, bathymetry and bathymetric derivatives images through object-based image analysis (OBIA) performed by using the ArcGIS tool RSOBIA (Remote Sensing OBIA). This unsupervised image segmentation was carried out on each cruise dataset separately, then classified and validated through comparison with bottom samples, images, and prior knowledge of the study areas.


2017 ◽  
Author(s):  
Karolina Korzeniowska ◽  
Yves Bühler ◽  
Mauro Marty ◽  
Oliver Korup

Abstract. Snow avalanches are destructive natural hazards in mountain regions that continue to claim lives, and cause infrastructural damage and traffic detours. Given that avalanches often occur in remote and poorly-accessible steep terrain, their detection and mapping is extensive and time consuming. Nonetheless, systematic avalanche detection over large areas could help to generate more complete and up-to-date inventories (cadastres) necessary for validating avalanche forecasting and hazard mapping. In this study, we have focused on automatically detecting avalanches and classifying them into release zones, tracks, and runout zones based on 0.25-m near-infrared (NIR) ADS80-SH92 aerial imagery using an object-based image analysis (OBIA) approach. Our algorithm takes into account the brightness, the normalised difference vegetation index (NDVI), and the normalised difference water index (NDWI) and its standard deviation (SDNDWI) in order to distinguish avalanches from other land-surface elements. Using normalised parameters allows readily applying this method across large areas. We trained the method by analysing the properties of snow avalanches at three 4-km2 areas near Davos, Switzerland. We compared the results with manually-mapped avalanche polygons, and obtained a user's accuracy of > 0.9 and a Cohen's kappa of 0.79–0.85. Testing the method for a larger area of 226.3 km2, we estimated producer's and user's accuracies of 0.61 and 0.78, respectively, with a Cohen's kappa of 0.67. Detected avalanches that overlapped with reference data by > 80 % occurred randomly throughout the testing area, showing that our method avoids overfitting. Our method shows potential in large-scale avalanche mapping, although further investigations into other regions are desirable to verify the stability of our selected thresholds and the transferability of the method.


2021 ◽  
Vol 193 (2) ◽  
Author(s):  
Jens Oldeland ◽  
Rasmus Revermann ◽  
Jona Luther-Mosebach ◽  
Tillmann Buttschardt ◽  
Jan R. K. Lehmann

AbstractPlant species that negatively affect their environment by encroachment require constant management and monitoring through field surveys. Drones have been suggested to support field surveyors allowing more accurate mapping with just-in-time aerial imagery. Furthermore, object-based image analysis tools could increase the accuracy of species maps. However, only few studies compare species distribution maps resulting from traditional field surveys and object-based image analysis using drone imagery. We acquired drone imagery for a saltmarsh area (18 ha) on the Hallig Nordstrandischmoor (Germany) with patches of Elymus athericus, a tall grass which encroaches higher parts of saltmarshes. A field survey was conducted afterwards using the drone orthoimagery as a baseline. We used object-based image analysis (OBIA) to segment CIR imagery into polygons which were classified into eight land cover classes. Finally, we compared polygons of the field-based and OBIA-based maps visually and for location, area, and overlap before and after post-processing. OBIA-based classification yielded good results (kappa = 0.937) and agreed in general with the field-based maps (field = 6.29 ha, drone = 6.22 ha with E. athericus dominance). Post-processing revealed 0.31 ha of misclassified polygons, which were often related to water runnels or shadows, leaving 5.91 ha of E. athericus cover. Overlap of both polygon maps was only 70% resulting from many small patches identified where E. athericus was absent. In sum, drones can greatly support field surveys in monitoring of plant species by allowing for accurate species maps and just-in-time captured very-high-resolution imagery.


Sign in / Sign up

Export Citation Format

Share Document