scholarly journals Change Detection in Multispectral Remote Sensing Images with Leader Intelligence PSO and NSCT Feature Fusion

2020 ◽  
Vol 9 (7) ◽  
pp. 462
Author(s):  
Josephina Paul ◽  
B. Uma Shankar ◽  
Balaram Bhattacharyya

Change detection (CD) using Remote sensing images have been a challenging problem over the years. Particularly in the unsupervised domain it is even more difficult. A novel automatic change detection technique in the unsupervised framework is proposed to address the real challenges involved in remote sensing change detection. As the accuracy of change map is highly dependent on quality of difference image (DI), a set of Normalized difference images and a complementary set of Normalized Ratio images are fused in the Nonsubsampled Contourlet Transform (NSCT) domain to generate high quality difference images. The NSCT is chosen as it is efficient in suppressing noise by utilizing its unique characteristics such as multidirectionality and shift-invariance that are suitable for change detection. The low frequency sub bands are fused by averaging to combine the complementary information in the two DIs, and, the higher frequency sub bands are merged by minimum energy rule, for preserving the edges and salient features in the image. By employing a novel Particle Swarm Optimization algorithm with Leader Intelligence (LIPSO), change maps are generated from fused sub bands in two different ways: (i) single spectral band, and (ii) combination of spectral bands. In LIPSO, the concept of leader and followers has been modified with intelligent particles performing Lévy flight randomly for better exploration, to achieve global optima. The proposed method achieved an overall accuracy of 99.64%, 98.49% and 97.66% on the three datasets considered, which is very high. The results have been compared with relevant algorithms. The quantitative metrics demonstrate the superiority of the proposed techniques over the other methods and are found to be statistically significant with McNemar’s test. Visual quality of the results also corroborate the superiority of the proposed method.

Author(s):  
W. Yuan ◽  
X. Yuan ◽  
Z. Fan ◽  
Z. Guo ◽  
X. Shi ◽  
...  

Abstract. Building Change Detection (BCD) via multi-temporal remote sensing images is essential for various applications such as urban monitoring, urban planning, and disaster assessment. However, most building change detection approaches only extract features from different kinds of remote sensing images for change index determination, which can not determine the insignificant changes of small buildings. Given co-registered multi-temporal remote sensing images, the illumination variations and misregistration errors always lead to inaccurate change detection results. This study investigates the applicability of multi-feature fusion from both directly extract 2D features from remote sensing images and 3D features extracted by the dense image matching (DIM) generated 3D point cloud for accurate building change index generation. This paper introduces a graph neural network (GNN) based end-to-end learning framework for building change detection. The proposed framework includes feature extraction, feature fusion, and change index prediction. It starts with a pre-trained VGG-16 network as a backend and uses U-net architecture with five layers for feature map extraction. The extracted 2D features and 3D features are utilized as input into GNN based feature fusion parts. In the GNN parts, we introduce a flexible context aggregation mechanism based on attention to address the illumination variations and misregistration errors, enabling the framework to reason about the image-based texture information and depth information introduced by DIM generated 3D point cloud jointly. After that, the GNN generated affinity matrix is utilized for change index determination through a Hungarian algorithm. The experiment conducted on a dataset that covered Setagaya-Ku, Tokyo area, shows that the proposed method generated change map achieved the precision of 0.762 and the F1-score of 0.68 at pixel-level. Compared to traditional image-based change detection methods, our approach learns prior over geometrical structure information from the real 3D world, which robust to the misregistration errors. Compared to CNN based methods, the proposed method learns to fuse 2D and 3D features together to represent more comprehensive information for building change index determination. The experimental comparison results demonstrated that the proposed approach outperforms the traditional methods and CNN based methods.


2021 ◽  
Vol 13 (16) ◽  
pp. 3171
Author(s):  
Pan Shao ◽  
Wenzhong Shi ◽  
Zhewei Liu ◽  
Ting Dong

Remote sensing change detection (CD) plays an important role in Earth observation. In this paper, we propose a novel fusion approach for unsupervised CD of multispectral remote sensing images, by introducing majority voting (MV) into fuzzy topological space (FTMV). The proposed FTMV approach consists of three principal stages: (1) the CD results of different difference images produced by the fuzzy C-means algorithm are combined using a modified MV, and an initial fusion CD map is obtained; (2) by using fuzzy topology theory, the initial fusion CD map is automatically partitioned into two parts: a weakly conflicting part and strongly conflicting part; (3) the weakly conflicting pixels that possess little or no conflict are assigned to the current class, while the pixel patterns with strong conflicts often misclassified are relabeled using the supported connectivity of fuzzy topology. FTMV can integrate the merits of different CD results and largely solve the conflicting problem during fusion. Experimental results on three real remote sensing images confirm the effectiveness and efficiency of the proposed method.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Liang Huang ◽  
Yuanmin Fang ◽  
Xiaoqing Zuo ◽  
Xueqin Yu

This paper presents a new automatic change detection method of multitemporal remote sensing images based on 2D-Otsu algorithm improved by Firefly algorithm. The proposed method is designed to automatically extract the changing area between two temporal remote sensing images. First, two different temporal remote sensing images were acquired through difference value method of remote sensing images; then, the 2D-Otsu threshold segmentation principles are analyzed and the optimal threshold of 2D-Otsu threshold segmentation method is figured out by using the Firefly algorithm, where the difference images are conducted with binary classification to obtain the changing category and the nonchanging category; finally, the proposed method is used to carry out change detection experiments on the two selected areas, where a variety of methods are compared. Experimental results show that the proposed method can effectively and quickly extract the changing area between the two temporal remote sensing images; thus, it is an effective method of change detection for remote sensing images.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1179 ◽  
Author(s):  
Xuemei Lou ◽  
Zhenhong Jia ◽  
Jie Yang ◽  
Nikola Kasabov

The explicit solution of the traditional ROF model in image denoising has the disadvantages of unstable results and requiring many iterations. To solve the problem, a new method, ROF model semi-implicit denoising, is proposed in this paper and applied to change detections of synthetic aperture radar (SAR) images. All remote sensing images used in this article have been calibrated by ENVI software. First, the ROF model semi-implicit denoising method is used to denoise the remote sensing images. Second, for the denoised images, difference images are obtained by the logarithmic ratio and mean ratio methods. The final difference image is obtained by principal component analysis fusion (PCA fusion) of the two difference images. Finally, the final difference image is clustered by fuzzy local information C-means clustering (FLICM) to obtain the change regions. The research results show that the proposed method has high detection accuracy and time operation efficiency.


Author(s):  
S. Ouyang ◽  
K. Fan ◽  
H. Wang ◽  
Z. Wang

Aiming at the significant loss of high frequency information during reducing noise and the pixel independence in change detection of multi-scale remote sensing image, an unsupervised algorithm is proposed based on the combination between Dual-tree Complex Wavelet Transform (DT-CWT) and Markov random Field (MRF) model. This method first performs multi-scale decomposition for the difference image by the DT-CWT and extracts the change characteristics in high-frequency regions by using a MRF-based segmentation algorithm. Then our method estimates the final maximum a posterior (MAP) according to the segmentation algorithm of iterative condition model (ICM) based on fuzzy c-means(FCM) after reconstructing the high-frequency and low-frequency sub-bands of each layer respectively. Finally, the method fuses the above segmentation results of each layer by using the fusion rule proposed to obtain the mask of the final change detection result. The results of experiment prove that the method proposed is of a higher precision and of predominant robustness properties.


2021 ◽  
Vol 13 (22) ◽  
pp. 4597
Author(s):  
Puhua Chen ◽  
Lei Guo ◽  
Xiangrong Zhang ◽  
Kai Qin ◽  
Wentao Ma ◽  
...  

Change detection for remote sensing images is an indispensable procedure for many remote sensing applications, such as geological disaster assessment, environmental monitoring, and urban development monitoring. Through this technique, the difference in certain areas after some emergencies can be determined to estimate their influence. Additionally, by analyzing the sequential difference maps, the change tendency can be found to help to predict future changes, such as urban development and environmental pollution. The complex variety of changes and interferential changes caused by imaging processing, such as season, weather and sensors, are critical factors that affect the effectiveness of change detection methods. Recently, there have been many research achievements surrounding this topic, but a perfect solution to all the problems in change detection has not yet been achieved. In this paper, we mainly focus on reducing the influence of imaging processing through the deep neural network technique with limited labeled samples. The attention-guided Siamese fusion network is constructed based on one basic Siamese network for change detection. In contrast to common processing, besides high-level feature fusion, feature fusion is operated during the whole feature extraction process by using an attention information fusion module. This module can not only realize the information fusion of two feature extraction network branches, but also guide the feature learning network to focus on feature channels with high importance. Finally, extensive experiments were performed on three public datasets, which could verify the significance of information fusion and the guidance of the attention mechanism during feature learning in comparison with related methods.


Sign in / Sign up

Export Citation Format

Share Document