scholarly journals Deep Learning for Detecting and Classifying Ocean Objects: Application of YoloV3 for Iceberg–Ship Discrimination

2020 ◽  
Vol 9 (12) ◽  
pp. 758
Author(s):  
Frederik Seerup Hass ◽  
Jamal Jokar Arsanjani

Synthetic aperture radar (SAR) plays a remarkable role in ocean surveillance, with capabilities of detecting oil spills, icebergs, and marine traffic both at daytime and at night, regardless of clouds and extreme weather conditions. The detection of ocean objects using SAR relies on well-established methods, mostly adaptive thresholding algorithms. In most waters, the dominant ocean objects are ships, whereas in arctic waters the vast majority of objects are icebergs drifting in the ocean and can be mistaken for ships in terms of navigation and ocean surveillance. Since these objects can look very much alike in SAR images, the determination of what objects actually are still relies on manual detection and human interpretation. With the increasing interest in the arctic regions for marine transportation, it is crucial to develop novel approaches for automatic monitoring of the traffic in these waters with satellite data. Hence, this study aims at proposing a deep learning model based on YoloV3 for discriminating icebergs and ships, which could be used for mapping ocean objects ahead of a journey. Using dual-polarization Sentinel-1 data, we pilot-tested our approach on a case study in Greenland. Our findings reveal that our approach is capable of training a deep learning model with reliable detection accuracy. Our methodical approach along with the choice of data and classifiers can be of great importance to climate change researchers, shipping industries and biodiversity analysts. The main difficulties were faced in the creation of training data in the Arctic waters and we concluded that future work must focus on issues regarding training data.

Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5731 ◽  
Author(s):  
Xiu-Zhi Chen ◽  
Chieh-Min Chang ◽  
Chao-Wei Yu ◽  
Yen-Lin Chen

Numerous vehicle detection methods have been proposed to obtain trustworthy traffic data for the development of intelligent traffic systems. Most of these methods perform sufficiently well under common scenarios, such as sunny or cloudy days; however, the detection accuracy drastically decreases under various bad weather conditions, such as rainy days or days with glare, which normally happens during sunset. This study proposes a vehicle detection system with a visibility complementation module that improves detection accuracy under various bad weather conditions. Furthermore, the proposed system can be implemented without retraining the deep learning models for object detection under different weather conditions. The complementation of the visibility was obtained through the use of a dark channel prior and a convolutional encoder–decoder deep learning network with dual residual blocks to resolve different effects from different bad weather conditions. We validated our system on multiple surveillance videos by detecting vehicles with the You Only Look Once (YOLOv3) deep learning model and demonstrated that the computational time of our system could reach 30 fps on average; moreover, the accuracy increased not only by nearly 5% under low-contrast scene conditions but also 50% under rainy scene conditions. The results of our demonstrations indicate that our approach is able to detect vehicles under various bad weather conditions without the need to retrain a new model.


2021 ◽  
Vol 13 (10) ◽  
pp. 2003
Author(s):  
Daeyong Jin ◽  
Eojin Lee ◽  
Kyonghwan Kwon ◽  
Taeyun Kim

In this study, we used convolutional neural networks (CNNs)—which are well-known deep learning models suitable for image data processing—to estimate the temporal and spatial distribution of chlorophyll-a in a bay. The training data required the construction of a deep learning model acquired from the satellite ocean color and hydrodynamic model. Chlorophyll-a, total suspended sediment (TSS), visibility, and colored dissolved organic matter (CDOM) were extracted from the satellite ocean color data, and water level, currents, temperature, and salinity were generated from the hydrodynamic model. We developed CNN Model I—which estimates the concentration of chlorophyll-a using a 48 × 27 sized overall image—and CNN Model II—which uses a 7 × 7 segmented image. Because the CNN Model II conducts estimation using only data around the points of interest, the quantity of training data is more than 300 times larger than that of CNN Model I. Consequently, it was possible to extract and analyze the inherent patterns in the training data, improving the predictive ability of the deep learning model. The average root mean square error (RMSE), calculated by applying CNN Model II, was 0.191, and when the prediction was good, the coefficient of determination (R2) exceeded 0.91. Finally, we performed a sensitivity analysis, which revealed that CDOM is the most influential variable in estimating the spatiotemporal distribution of chlorophyll-a.


2021 ◽  
Author(s):  
J. Annrose ◽  
N. Herald Anantha Rufus ◽  
C. R. Edwin Selva Rex ◽  
D. Godwin Immanuel

Abstract Bean which is botanically called Phaseolus vulgaris L belongs to the Fabaceae family.During bean disease identification, unnecessary economical losses occur due to the delay of the treatment period, incorrect treatment, and lack of knowledge. The existing deep learning and machine learning techniques met few issues such as high computational complexity, higher cost associated with the training data, more execution time, noise, feature dimensionality, lower accuracy, low speed, etc. To tackle these problems, we have proposed a hybrid deep learning model with an Archimedes optimization algorithm (HDL-AOA) for bean disease classification. In this work, there are five bean classes of which one is a healthy class whereas the remaining four classes indicate different diseases such as Bean halo blight, Pythium diseases, Rhizoctonia root rot, and Anthracnose abnormalities acquired from the Soybean (Large) Data Set.The hybrid deep learning technique is the combination of wavelet packet decomposition (WPD) and long short term memory (LSTM). Initially, the WPD decomposes the input images into four sub-series. For these sub-series, four LSTM networks were developed. During bean disease classification, an Archimedes optimization algorithm (AOA) enhances the classification accuracy for multiple single LSTM networks. MATLAB software implements the HDL-AOA model for bean disease classification. The proposed model accomplishes lower MAPE than other exiting methods. Finally, the proposed HDL-AOA model outperforms excellent classification results using different evaluation measures such as accuracy, specificity, sensitivity, precision, recall, and F-score.


2019 ◽  
Author(s):  
Mojtaba Haghighatlari ◽  
Gaurav Vishwakarma ◽  
Mohammad Atif Faiz Afzal ◽  
Johannes Hachmann

<div><div><div><p>We present a multitask, physics-infused deep learning model to accurately and efficiently predict refractive indices (RIs) of organic molecules, and we apply it to a library of 1.5 million compounds. We show that it outperforms earlier machine learning models by a significant margin, and that incorporating known physics into data-derived models provides valuable guardrails. Using a transfer learning approach, we augment the model to reproduce results consistent with higher-level computational chemistry training data, but with a considerably reduced number of corresponding calculations. Prediction errors of machine learning models are typically smallest for commonly observed target property values, consistent with the distribution of the training data. However, since our goal is to identify candidates with unusually large RI values, we propose a strategy to boost the performance of our model in the remoter areas of the RI distribution: We bias the model with respect to the under-represented classes of molecules that have values in the high-RI regime. By adopting a metric popular in web search engines, we evaluate our effectiveness in ranking top candidates. We confirm that the models developed in this study can reliably predict the RIs of the top 1,000 compounds, and are thus able to capture their ranking. We believe that this is the first study to develop a data-derived model that ensures the reliability of RI predictions by model augmentation in the extrapolation region on such a large scale. These results underscore the tremendous potential of machine learning in facilitating molecular (hyper)screening approaches on a massive scale and in accelerating the discovery of new compounds and materials, such as organic molecules with high-RI for applications in opto-electronics.</p></div></div></div>


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Sunil Kumar Prabhakar ◽  
Dong-Ok Won

To unlock information present in clinical description, automatic medical text classification is highly useful in the arena of natural language processing (NLP). For medical text classification tasks, machine learning techniques seem to be quite effective; however, it requires extensive effort from human side, so that the labeled training data can be created. For clinical and translational research, a huge quantity of detailed patient information, such as disease status, lab tests, medication history, side effects, and treatment outcomes, has been collected in an electronic format, and it serves as a valuable data source for further analysis. Therefore, a huge quantity of detailed patient information is present in the medical text, and it is quite a huge challenge to process it efficiently. In this work, a medical text classification paradigm, using two novel deep learning architectures, is proposed to mitigate the human efforts. The first approach is that a quad channel hybrid long short-term memory (QC-LSTM) deep learning model is implemented utilizing four channels, and the second approach is that a hybrid bidirectional gated recurrent unit (BiGRU) deep learning model with multihead attention is developed and implemented successfully. The proposed methodology is validated on two medical text datasets, and a comprehensive analysis is conducted. The best results in terms of classification accuracy of 96.72% is obtained with the proposed QC-LSTM deep learning model, and a classification accuracy of 95.76% is obtained with the proposed hybrid BiGRU deep learning model.


2021 ◽  
Author(s):  
J. Annrose ◽  
N. Herald Anantha Rufus ◽  
C. R. Edwin Selva Rex ◽  
D. Godwin Immanuel

Abstract Bean which is botanically called Phaseolus vulgaris L belongs to the Fabaceae family.During bean disease identification, unnecessary economical losses occur due to the delay of the treatment period, incorrect treatment, and lack of knowledge. The existing deep learning and machine learning techniques met few issues such as high computational complexity, higher cost associated with the training data, more execution time, noise, feature dimensionality, lower accuracy, low speed, etc. To tackle these problems, we have proposed a hybrid deep learning model with an Archimedes optimization algorithm (HDL-AOA) for bean disease classification. In this work, there are five bean classes of which one is a healthy class whereas the remaining four classes indicate different diseases such as Bean halo blight, Pythium diseases, Rhizoctonia root rot, and Anthracnose abnormalities acquired from the Soybean (Large) Data Set.The hybrid deep learning technique is the combination of wavelet packet decomposition (WPD) and long short term memory (LSTM). Initially, the WPD decomposes the input images into four sub-series. For these sub-series, four LSTM networks were developed. During bean disease classification, an Archimedes optimization algorithm (AOA) enhances the classification accuracy for multiple single LSTM networks. MATLAB software implements the HDL-AOA model for bean disease classification. The proposed model accomplishes lower MAPE than other exiting methods. Finally, the proposed HDL-AOA model outperforms excellent classification results using different evaluation measures such as accuracy, specificity, sensitivity, precision, recall, and F-score.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3382 ◽  
Author(s):  
Hai Chien Pham ◽  
Quoc-Bao Ta ◽  
Jeong-Tae Kim ◽  
Duc-Duy Ho ◽  
Xuan-Linh Tran ◽  
...  

In this study, we investigate a novel idea of using synthetic images of bolts which are generated from a graphical model to train a deep learning model for loosened bolt detection. Firstly, a framework for bolt-loosening detection using image-based deep learning and computer graphics is proposed. Next, the feasibility of the proposed framework is demonstrated through the bolt-loosening monitoring of a lab-scaled bolted joint model. For practicality, the proposed idea is evaluated on the real-scale bolted connections of a historical truss bridge in Danang, Vietnam. The results show that the deep learning model trained by the synthesized images can achieve accurate bolt recognitions and looseness detections. The proposed methodology could help to reduce the time and cost associated with the collection of high-quality training data and further accelerate the applicability of vision-based deep learning models trained on synthetic data in practice.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zhijian Huang ◽  
Fangmin Li ◽  
Xidao Luan ◽  
Zuowei Cai

Automatically detecting mud in bauxite ores is important and valuable, with which we can improve productivity and reduce pollution. However, distinguishing mud and ores in a real scene is challenging for their similarity in shape, color, and texture. Moreover, training a deep learning model needs a large amount of exactly labeled samples, which is expensive and time consuming. Aiming at the challenging problem, this paper proposed a novel weakly supervised method based on deep active learning (AL), named YOLO-AL. The method uses the YOLO-v3 model as the basic detector, which is initialized with the pretrained weights on the MS COCO dataset. Then, an AL framework-embedded YOLO-v3 model is constructed. In the AL process, it iteratively fine-tunes the last few layers of the YOLO-v3 model with the most valuable samples, which is selected by a Less Confident (LC) strategy. Experimental results show that the proposed method can effectively detect mud in ores. More importantly, the proposed method can obviously reduce the labeled samples without decreasing the detection accuracy.


2020 ◽  
Vol 36 (12) ◽  
pp. 3856-3862
Author(s):  
Di Jin ◽  
Peter Szolovits

Abstract Motivation In evidence-based medicine, defining a clinical question in terms of the specific patient problem aids the physicians to efficiently identify appropriate resources and search for the best available evidence for medical treatment. In order to formulate a well-defined, focused clinical question, a framework called PICO is widely used, which identifies the sentences in a given medical text that belong to the four components typically reported in clinical trials: Participants/Problem (P), Intervention (I), Comparison (C) and Outcome (O). In this work, we propose a novel deep learning model for recognizing PICO elements in biomedical abstracts. Based on the previous state-of-the-art bidirectional long-short-term memory (bi-LSTM) plus conditional random field architecture, we add another layer of bi-LSTM upon the sentence representation vectors so that the contextual information from surrounding sentences can be gathered to help infer the interpretation of the current one. In addition, we propose two methods to further generalize and improve the model: adversarial training and unsupervised pre-training over large corpora. Results We tested our proposed approach over two benchmark datasets. One is the PubMed-PICO dataset, where our best results outperform the previous best by 5.5%, 7.9% and 5.8% for P, I and O elements in terms of F1 score, respectively. And for the other dataset named NICTA-PIBOSO, the improvements for P/I/O elements are 3.9%, 15.6% and 1.3% in F1 score, respectively. Overall, our proposed deep learning model can obtain unprecedented PICO element detection accuracy while avoiding the need for any manual feature selection. Availability and implementation Code is available at https://github.com/jind11/Deep-PICO-Detection.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Gyeong-Hoon Lee ◽  
Jeil Jo ◽  
Cheong Hee Park

Jamming is a form of electronic warfare where jammers radiate interfering signals toward an enemy radar, disrupting the receiver. The conventional method for determining an effective jamming technique corresponding to a threat signal is based on the library which stores the appropriate jamming method for signal types. However, there is a limit to the use of a library when a threat signal of a new type or a threat signal that has been altered differently from existing types is received. In this paper, we study two methods of predicting the appropriate jamming technique for a received threat signal using deep learning: using a deep neural network on feature values extracted manually from the PDW list and using long short-term memory (LSTM) which takes the PDW list as input. Using training data consisting of pairs of threat signals and corresponding jamming techniques, a deep learning model is trained which outputs jamming techniques for threat signal inputs. Training data are constructed based on the information in the library, but the trained deep learning model is used to predict jamming techniques for received threat signals without using the library. The prediction performance and time complexity of two proposed methods are compared. In particular, the ability to predict jamming techniques for unknown types of radar signals which are not used in the stage of training the model is analyzed.


Sign in / Sign up

Export Citation Format

Share Document