scholarly journals Bidirectionality and Compartmentation of Metabolic Fluxes Are Revealed in the Dynamics of Isotopomer Networks

2009 ◽  
Vol 10 (4) ◽  
pp. 1697-1718 ◽  
Author(s):  
David Schryer ◽  
Pearu Peterson ◽  
Toomas Paalme ◽  
Marko Vendelin
Keyword(s):  
2007 ◽  
Vol 97 (1) ◽  
pp. 118-137 ◽  
Author(s):  
Scott Banta ◽  
Murali Vemula ◽  
Tadaaki Yokoyama ◽  
Arul Jayaraman ◽  
François Berthiaume ◽  
...  

2015 ◽  
Vol 35 (5) ◽  
pp. 759-765 ◽  
Author(s):  
Lijing Xin ◽  
Bernard Lanz ◽  
gxia Lei ◽  
Rolf Gruetter

13C magnetic resonance spectroscopy (MRS) combined with the administration of 13C labeled substrates uniquely allows to measure metabolic fluxes in vivo in the brain of humans and rats. The extension to mouse models may provide exclusive prospect for the investigation of models of human diseases. In the present study, the short-echo-time (TE) full-sensitivity 1H-[13C] MRS sequence combined with high magnetic field (14.1 T) and infusion of [U-13C6] glucose was used to enhance the experimental sensitivity in vivo in the mouse brain and the 13C turnover curves of glutamate C4, glutamine C4, glutamate+glutamine C3, aspartate C2, lactate C3, alanine C3, γ-aminobutyric acid C2, C3 and C4 were obtained. A one-compartment model was used to fit 13C turnover curves and resulted in values of metabolic fluxes including the tricarboxylic acid (TCA) cycle flux VTCA (1.05 ± 0.04 μmol/g per minute), the exchange flux between 2-oxoglutarate and glutamate Vx (0.48 ± 0.02 μmol/g per minute), the glutamate-glutamine exchange rate Vgln (0.20 ± 0.02 μmol/g per minute), the pyruvate dilution factor Kdil (0.82 ± 0.01), and the ratio for the lactate conversion rate and the alanine conversion rate VLac/ VAla (10 ± 2). This study opens the prospect of studying transgenic mouse models of brain pathologies.


2002 ◽  
Vol 15 (6) ◽  
pp. 404-415 ◽  
Author(s):  
Caterina Puccetti ◽  
Tommaso Aureli ◽  
Cesare Manetti ◽  
Filippo Conti

2005 ◽  
Vol 289 (1) ◽  
pp. E53-E61 ◽  
Author(s):  
Shawn C. Burgess ◽  
F. Mark H. Jeffrey ◽  
Charles Storey ◽  
Angela Milde ◽  
Natasha Hausler ◽  
...  

Background strain is known to influence the way a genetic manipulation affects mouse phenotypes. Despite data that demonstrate variations in the primary phenotype of basic inbred strains of mice, there is limited data available about specific metabolic fluxes in vivo that may be responsible for the differences in strain phenotypes. In this study, a simple stable isotope tracer/NMR spectroscopic protocol has been used to compare metabolic fluxes in ICR, FVB/N (FVB), C57BL/6J (B6), and 129S1/SvImJ (129) mouse strains. After a short-term fast in these mice, there were no detectable differences in the pathway fluxes that contribute to glucose synthesis. However, after a 24-h fast, B6 mice retain some residual glycogenolysis compared with other strains. FVB mice also had a 30% higher in vivo phospho enolpyruvate carboxykinase flux and total glucose production from the level of the TCA cycle compared with B6 and 129 strains, while total body glucose production in the 129 strain was ∼30% lower than in either FVB or B6 mice. These data indicate that there are inherent differences in several pathways involving glucose metabolism of inbred strains of mice that may contribute to a phenotype after genetic manipulation in these animals. The techniques used here are amenable to use as a secondary or tertiary tool for studying mouse models with disruptions of intermediary metabolism.


2012 ◽  
Vol 109 (13) ◽  
pp. 4968-4973 ◽  
Author(s):  
S. Foret ◽  
R. Kucharski ◽  
M. Pellegrini ◽  
S. Feng ◽  
S. E. Jacobsen ◽  
...  

2015 ◽  
Vol 108 (1) ◽  
pp. 163-172 ◽  
Author(s):  
Sonia Cortassa ◽  
Viviane Caceres ◽  
Lauren N. Bell ◽  
Brian O’Rourke ◽  
Nazareno Paolocci ◽  
...  

1989 ◽  
Vol 259 (3) ◽  
pp. 893-896 ◽  
Author(s):  
C E King ◽  
P T Hawkins ◽  
L R Stephens ◽  
R H Michell

When intact human erythrocytes are incubated at metabolic steady state in a chloride-free medium containing [32P]Pi, there is rapid labelling of the gamma-phosphate of ATP, followed by a slower labelling of the monoester phosphate groups of phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] [King, Stephens, Hawkins, Guy & Michell (1987) Biochem. J. 244, 209-217]. We have analysed the early kinetics of the labelling of these phosphate groups, in order to determine: (a) the steady-state rates of the interconversions of phosphatidylinositol, PtdIns4P and PtdIns(4,5)P2; and (b) the fractions of the total cellular complement of PtdIns4P and PtdIns(4,5)P2 that participate in this steady-state turnover. The experimental data most closely fit a pattern of PtdIns4P and PtdIns(4,5)P2 turnover in which one-quarter of the total cellular complement of each lipid is in the metabolic pool that participates in rapid metabolic turnover, with rate constants of 0.028 min-1 for the interconversion of PtdIns and PtdIns4P, and of 0.010 min-1 for the PtdIns4P/PtdIns(4,5)P2 cycle. These rate constants represent metabolic fluxes of approx. 2.1 nmol of lipid/h per ml of packed erythrocytes between PtdIns and PtdIns4P and of approx. 5.7 nmol/h per ml of cells between PtdIns4P and PtdIns(4,5)P2.


2011 ◽  
Vol 22 (4) ◽  
pp. 566-575 ◽  
Author(s):  
Luca Gerosa ◽  
Uwe Sauer
Keyword(s):  

2016 ◽  
Vol 60 (4) ◽  
pp. 303-313 ◽  
Author(s):  
Juhyun Kim ◽  
Manuel Salvador ◽  
Elizabeth Saunders ◽  
Jaime González ◽  
Claudio Avignone-Rossa ◽  
...  

The chassis is the cellular host used as a recipient of engineered biological systems in synthetic biology. They are required to propagate the genetic information and to express the genes encoded in it. Despite being an essential element for the appropriate function of genetic circuits, the chassis is rarely considered in their design phase. Consequently, the circuits are transferred to model organisms commonly used in the laboratory, such as Escherichia coli, that may be suboptimal for a required function. In this review, we discuss some of the properties desirable in a versatile chassis and summarize some examples of alternative hosts for synthetic biology amenable for engineering. These properties include a suitable life style, a robust cell wall, good knowledge of its regulatory network as well as of the interplay of the host components with the exogenous circuits, and the possibility of developing whole-cell models and tuneable metabolic fluxes that could allow a better distribution of cellular resources (metabolites, ATP, nucleotides, amino acids, transcriptional and translational machinery). We highlight Pseudomonas putida, widely used in many different biotechnological applications as a prominent organism for synthetic biology due to its metabolic diversity, robustness and ease of manipulation.


Sign in / Sign up

Export Citation Format

Share Document