scholarly journals Fumaric Acid Esters Do Not Reduce Inflammatory NF-κB/p65 Nuclear Translocation, ICAM-1 Expression and T-Cell Adhesiveness of Human Brain Microvascular Endothelial Cells

2015 ◽  
Vol 16 (8) ◽  
pp. 19086-19095 ◽  
Author(s):  
Axel Haarmann ◽  
Mathias Nehen ◽  
Annika Deiß ◽  
Mathias Buttmann
2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Rui Liu ◽  
Jin-ze Li ◽  
Jun-ke Song ◽  
Jia-lin Sun ◽  
Yong-jie Li ◽  
...  

Cerebrovascular accumulation of amyloid-β(Aβ) peptides in Alzheimer’s disease (AD) may contribute to disease progression through Aβ-induced microvascular endothelial pathogenesis. Pinocembrin has been shown to have therapeutic effects in AD models. These effects correlate with preservation of microvascular function, but the effect on endothelial cells under Aβ-damaged conditions is unclear. The present study focuses on thein vitroprotective effect of pinocembrin on fibrillar Aβ1−40(fAβ1−40) injured human brain microvascular endothelial cells (hBMECs) and explores potential mechanisms. The results demonstrate that fAβ1−40-induced cytotoxicity in hBMECs can be rescued by pinocembrin treatment. Pinocembrin increases cell viability, reduces the release of LDH, and relieves nuclear condensation. The mechanisms of this reversal from Aβmay be associated with the inhibition of inflammatory response, involving inhibition of MAPK activation, downregulation of phosphor-IKK level, relief of IκBαdegradation, blockage of NF-κB p65 nuclear translocation, and reduction of the release of proinflammatory cytokines. Pinocembrin does not show obvious effects on regulating the redox imbalance after exposure to fAβ1−40. Together, the suppression of MAPK and the NF-κB signaling pathways play a significant role in the anti-inflammation of pinocembrin in hBMECs subjected to fAβ1−40. This may serve as a therapeutic agent for BMEC protection in Alzheimer’s-related deficits.


2021 ◽  
Vol 22 (10) ◽  
pp. 5065
Author(s):  
Tatjana Vujić ◽  
Domitille Schvartz ◽  
Anton Iliuk ◽  
Jean-Charles Sanchez

Over the last decade, the knowledge in extracellular vesicles (EVs) biogenesis and modulation has increasingly grown. As their content reflects the physiological state of their donor cells, these “intercellular messengers” progressively became a potential source of biomarker reflecting the host cell state. However, little is known about EVs released from the human brain microvascular endothelial cells (HBMECs). The current study aimed to isolate and characterize EVs from HBMECs and to analyze their EVs proteome modulation after paraquat (PQ) stimulation, a widely used herbicide known for its neurotoxic effect. Size distribution, concentration and presence of well-known EV markers were assessed. Identification and quantification of PQ-exposed EV proteins was conducted by data-independent acquisition mass spectrometry (DIA-MS). Signature pathways of PQ-treated EVs were analyzed by gene ontology terms and pathway enrichment. Results highlighted that EVs exposed to PQ have modulated pathways, namely the ubiquinone metabolism and the transcription HIF-1 targets. These pathways may be potential molecular signatures of the PQ-induced toxicity carried by EVs that are reflecting their cell of origin by transporting with them irreversible functional changes.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
Shumei Man ◽  
Eroboghene E. Ubogu ◽  
Katherine A. Williams ◽  
Barbara Tucky ◽  
Melissa K. Callahan ◽  
...  

Endothelial cells that functionally express blood brain barrier (BBB) properties are useful surrogates for studying leukocyte-endothelial cell interactions at the BBB. In this study, we compared two different endothelial cellular models: transfected human brain microvascular endothelial cells (THBMECs) and human umbilical vein endothelial cells (HUVECs). With each grow under optimal conditions, confluent THBMEC cultures showed continuous occludin and ZO-1 immunoreactivity, while HUVEC cultures exhibited punctate ZO-1 expression at sites of cell-cell contact only. Confluent THBMEC cultures on 24-well collagen-coated transwell inserts had significantly higher transendothelial electrical resistance (TEER) and lower solute permeability than HUVECs. Confluent THBMECs were more restrictive for mononuclear cell migration than HUVECs. Only THBMECs utilized abluminal CCL5 to facilitate T-lymphocyte migration in vitro although both THBMECs and HUVECs employed CCL3 to facilitate T cell migration. These data establish baseline conditions for using THBMECs to develop in vitro BBB models for studying leukocyte-endothelial interactions during neuroinflammation.


Sign in / Sign up

Export Citation Format

Share Document