scholarly journals Functional Characterization of Soybean Glyma04g39610 as a Brassinosteroid Receptor Gene and Evolutionary Analysis of Soybean Brassinosteroid Receptors

2016 ◽  
Vol 17 (6) ◽  
pp. 897 ◽  
Author(s):  
Suna Peng ◽  
Ping Tao ◽  
Feng Xu ◽  
Aiping Wu ◽  
Weige Huo ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhiying Zhao ◽  
Sha Tang ◽  
Yiming Zhang ◽  
Jingjing Yue ◽  
Jiaqi Xu ◽  
...  

AbstractBrassinosteroids (BRs) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, those in foxtail millet remain largely unknown. Here, we show that the BR signaling function of BRASSINOSTEROID INSENSITIVE 1 (BRI1) is conserved between Arabidopsis and foxtail millet, a new model species for C4 and Panicoideae grasses. We identified four putative BR receptor genes in the foxtail millet genome: SiBRI1, SiBRI1-LIKE RECEPTOR KINASE 1 (SiBRL1), SiBRL2 and SiBRL3. Phylogenetic analysis was used to classify the BR receptors in dicots and monocots into three branches. Analysis of their expression patterns by quantitative real-time PCR (qRT-PCR) showed that these receptors were ubiquitously expressed in leaves, stems, dark-grown seedlings, roots and non-flowering spikelets. GFP fusion experiments verified that SiBRI1 localized to the cell membrane. We also explored the SiBRI1 function in Arabidopsis through complementation experiments. Ectopic overexpression of SiBRI1 in an Arabidopsis BR receptor loss-of-function mutant, bri1-116, mostly reversed the developmental defects of the mutant. When SiBRI1 was overexpressed in foxtail millet, the plants showed a drooping leaf phenotype and root development inhibition, lateral root initiation inhibition, and the expression of BR synthesis genes was inhibited. We further identified BRI1-interacting proteins by immunoprecipitation (IP)-mass spectrometry (MS). Our results not only demonstrate that SiBRI1 plays a conserved role in BR signaling in foxtail millet but also provide insight into the molecular mechanism of SiBRI1.


2007 ◽  
Vol 156 (2) ◽  
pp. 249-256 ◽  
Author(s):  
Antonio Balsamo ◽  
Alessandro Cicognani ◽  
Monia Gennari ◽  
Wolfgang G Sippell ◽  
Soara Menabò ◽  
...  

Objective: The renal form of pseudohypoaldosteronism type 1 (PHA1) is a rare disease caused by mutations in the human mineralocorticoid receptor gene (NR3C2). Design: Aim of the study was to analyze the NR3C2 gene in three Italian patients with clinical signs of renal PHA1 and to evaluate the distribution of the -2G > C, c.538A > G, and c.722C > T single nucleotide polymorphism (SNP) pattern in the PHA1 patients and in 90 controls of the same ethnic origin. Methods: Analysis of the NR3C2 gene sequence and of the polymorphic SNP markers. Functional characterization of the detected novel NR3C2 mutations utilizing aldosterone-binding assays and reporter gene transactivation assays. Results: One novel nonsense (Y134X) and one novel frameshift (2125delA) mutation were detected. They exhibited no aldosterone binding and no transactivation abilities. No mutation was detected in the third patient. Haploinsufficiency of NR3C2 was ruled out by microsatellite analysis in this patient. The c.722T SNP was detected in 97% of alleles in the Italian population which is significantly different from the general German or US population. Conclusions: Molecular analysis of the NR3C2 gene in PHA1 patients is warranted to detect novel mutations in order to clarify the underlying genetic cause, which may extend the insight into relevant functional regions of the hMR protein. The effect the different distribution of the c.722T SNP is not clear to date. Further studies are necessary to provide evidence as to a possible advantage of a less sensitive hMR in southern countries.


1997 ◽  
Vol 47 (1) ◽  
pp. 64-72 ◽  
Author(s):  
Matthew H. Hsu ◽  
Julia A. Ember ◽  
Meiying Wang ◽  
Eric R. Prossnitz ◽  
Tony E. Hugli ◽  
...  

FEBS Journal ◽  
2006 ◽  
Vol 273 (24) ◽  
pp. 5550-5563 ◽  
Author(s):  
Siva K. Panguluri ◽  
Prasanna Kumar ◽  
Subba R. Palli

2019 ◽  
Vol 39 (12) ◽  
Author(s):  
Suman Choudhary ◽  
Jagadeesh Janjanam ◽  
Sudarshan Kumar ◽  
Jai K. Kaushik ◽  
Ashok K. Mohanty

Abstract Oviduct-specific glycoprotein (OVGP1) is a high molecular weight chitinase-like protein belonging to GH18 family. It is secreted by non-ciliated epithelial cells of oviduct during estrous cycle providing an essential milieu for fertilization and embryo development. The present study reports the characterization of buffalo OVGP1 through structural modeling, carbohydrate-binding properties and evolutionary analysis. Structural model displayed the typical fold of GH18 family members till the boundary of chitinase-like domain further consisting of a large (β/α)8 TIM barrel sub-domain and a small (α+β) sub-domain. Two critical catalytic residues were found substituted in the catalytic centre (Asp to Phe118, Glu to Leu120) compared with the active chitinase. The carbohydrate-binding groove in TIM barrel was lined with various conserved aromatic residues. Molecular docking with different sugars revealed the involvement of various residues in hydrogen-bonding and non-bonded contacts. Most of the substrate-binding residues were conserved except for a few replacements (Ser13, Lys48, Asp49, Pro50, Asp167, Glu199, Gln272 and Phe275) in comparison with other GH18 members. The residues Trp10, Trp79, Asn80, Gln272, Phe275 and Trp334 were involved in recognition of all six ligands. The α+β sub-domain participated in sugar-binding through Thr270, Gln272, Tyr242 and Phe275. The binding assays revealed significant sugar-binding with purified native and recombinant OVGP1. Phylogenetic analysis revealed that OVGP1 was closely related to AMCases followed by other CLPs and evolution of OVGP1 occurred through several gene duplications. This is the first study describing the structural characteristics of OVGP1 that will further help to understand its interaction with gametes to perform crucial reproductive functions.


Sign in / Sign up

Export Citation Format

Share Document