gene switches
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 13)

H-INDEX

15
(FIVE YEARS 1)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 132
Author(s):  
Maria I. Falguera Uceda ◽  
Silvia Sánchez-Casanova ◽  
Clara Escudero-Duch ◽  
Nuria Vilaboa

Current cranial repair techniques combine the use of autologous bone grafts and biomaterials. In addition to their association with harvesting morbidity, autografts are often limited by insufficient quantity of bone stock. Biomaterials lead to better outcomes, but their effectiveness is often compromised by the unpredictable lack of integration and structural failure. Bone tissue engineering offers the promising alternative of generating constructs composed of instructive biomaterials including cells or cell-secreted products, which could enhance the outcome of reconstructive treatments. This review focuses on cell-based approaches with potential to regenerate calvarial bone defects, including human studies and preclinical research. Further, we discuss strategies to deliver extracellular matrix, conditioned media and extracellular vesicles derived from cell cultures. Recent advances in 3D printing and bioprinting techniques that appear to be promising for cranial reconstruction are also discussed. Finally, we review cell-based gene therapy approaches, covering both unregulated and regulated gene switches that can create spatiotemporal patterns of transgenic therapeutic molecules. In summary, this review provides an overview of the current developments in cell-based strategies with potential to enhance the surgical armamentarium for regenerating cranial vault defects.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nik Franko ◽  
Ana Palma Teixeira ◽  
Shuai Xue ◽  
Ghislaine Charpin-El Hamri ◽  
Martin Fussenegger

AbstractThe main (Mpro) and papain-like (PLpro) proteases encoded by SARS-CoV-2 are essential to process viral polyproteins into functional units, thus representing key targets for anti-viral drug development. There is a need for an efficient inhibitor screening system that can identify drug candidates in a cellular context. Here we describe modular, tunable autoproteolytic gene switches (TAGS) relying on synthetic transcription factors that self-inactivate, unless in the presence of coronavirus protease inhibitors, consequently activating transgene expression. TAGS rapidly report the impact of drug candidates on Mpro and PLpro activities with a high signal-to-noise response and a sensitivity matching concentration ranges inhibiting viral replication. The modularity of the TAGS enabled the study of other Coronaviridae proteases, characterization of mutations and multiplexing of gene switches in human cells. Mice implanted with Mpro or PLpro TAGS-engineered cells enabled analysis of the activity and bioavailability of protease inhibitors in vivo in a virus-free setting.


2021 ◽  
Author(s):  
Alicia Broto ◽  
Erika Gaspari ◽  
Samuel Miravet-Verde ◽  
Vitor Martins dos Santos ◽  
Mark Isalan

Abstract Mycoplasmas have exceptionally streamlined genomes and are strongly adapted to their many hosts, which provide them with essential nutrients. Owing to their relative genomic simplicity, Mycoplasmas have been used for the development of chassis to deploy tailored vaccines. However, the dearth of robust and precise toolkits for genomic manipulation and tight regulation has hindered any substantial advance. Herein we describe the construction of a robust genetic toolkit for M. pneumoniae, and its successful deployment to engineer synthetic gene switches that control and limit Mycoplasma growth, for biosafety containment applications. We found these synthetic gene circuits to be stable and robust in the long-term, in the context of a minimal cell. With this work, we lay a foundation to develop viable and robust biosafety systems to exploit a synthetic Mycoplasma chassis for live attenuated vaccines or even for live vectors for biotherapeutics.


2021 ◽  
Vol 64 ◽  
pp. 98-105
Author(s):  
Oliver Madderson ◽  
Ana Palma Teixeira ◽  
Martin Fussenegger

2021 ◽  
Author(s):  
Juraj Szavits-Nossan ◽  
Ramon Grima

We consider a stochastic model where a gene switches between two states, an mRNA transcript is released in the active state and subsequently it undergoes an arbitrary number of sequential unimolecular steps before being degraded. The reactions effectively describe various stages of the mRNA life cycle such as initiation, elongation, termination, splicing, export and degradation. We construct a novel mean-field approach that leads to closed-form steady-state distributions for the number of transcript molecules at each stage of the mRNA life cycle. By comparison with stochastic simulations, we show that the approximation is highly accurate over all of parameter space, independent of the type of expression (constitutive or bursty) and of the shape of the distribution (unimodal, bimodal and nearly bimodal). The theory predicts that in a population of identical cells, any bimodality is gradually washed away as the mRNA progresses through its life cycle.


2021 ◽  
Author(s):  
Takeshi Tabuchi ◽  
Yohei Yokobayashi

Synthetic riboswitches can be used as chemical gene switches in cell-free protein synthesis systems. We provide a current perspective on the state of cell-free riboswitch technologies and their future directions.


2021 ◽  
Vol 7 (1) ◽  
pp. eabd3568
Author(s):  
Nils Schneider ◽  
Franz-Georg Wieland ◽  
Deqiang Kong ◽  
Alexandra A. M. Fischer ◽  
Maximilian Hörner ◽  
...  

Light-inducible gene switches represent a key strategy for the precise manipulation of cellular events in fundamental and applied research. However, the performance of widely used gene switches is limited due to low tissue penetrance and possible phototoxicity of the light stimulus. To overcome these limitations, we engineer optogenetic synthetic transcription factors to undergo liquid-liquid phase separation in close spatial proximity to promoters. Phase separation of constitutive and optogenetic synthetic transcription factors was achieved by incorporation of intrinsically disordered regions. Supported by a quantitative mathematical model, we demonstrate that engineered transcription factor droplets form at target promoters and increase gene expression up to fivefold. This increase in performance was observed in multiple mammalian cells lines as well as in mice following in situ transfection. The results of this work suggest that the introduction of intrinsically disordered domains is a simple yet effective means to boost synthetic transcription factor activity.


Sign in / Sign up

Export Citation Format

Share Document