scholarly journals G2/M-Phase Checkpoint Adaptation and Micronuclei Formation as Mechanisms That Contribute to Genomic Instability in Human Cells

2017 ◽  
Vol 18 (11) ◽  
pp. 2344 ◽  
Author(s):  
Danî Kalsbeek ◽  
Roy Golsteyn
2001 ◽  
Vol 21 (5) ◽  
pp. 1710-1718 ◽  
Author(s):  
David J. Galgoczy ◽  
David P. Toczyski

ABSTRACT Despite the fact that eukaryotic cells enlist checkpoints to block cell cycle progression when their DNA is damaged, cells still undergo frequent genetic rearrangements, both spontaneously and in response to genotoxic agents. We and others have previously characterized a phenomenon (adaptation) in which yeast cells that are arrested at a DNA damage checkpoint eventually override this arrest and reenter the cell cycle, despite the fact that they have not repaired the DNA damage that elicited the arrest. Here, we use mutants that are defective in checkpoint adaptation to show that adaptation is important for achieving the highest possible viability after exposure to DNA-damaging agents, but it also acts as an entrée into some forms of genomic instability. Specifically, the spontaneous and X-ray-induced frequencies of chromosome loss, translocations, and a repair process called break-induced replication occur at significantly reduced rates in adaptation-defective mutants. This indicates that these events occur after a cell has first arrested at the checkpoint and then adapted to that arrest. Because malignant progression frequently involves loss of genes that function in DNA repair, adaptation may promote tumorigenesis by allowing genomic instability to occur in the absence of repair.


2012 ◽  
Vol 446 (3) ◽  
pp. 373-381 ◽  
Author(s):  
Philip M. Kubara ◽  
Sophie Kernéis-Golsteyn ◽  
Aurélie Studény ◽  
Brittany B. Lanser ◽  
Laurent Meijer ◽  
...  

In the present paper, we report that mitosis is a key step in the cellular response to genotoxic agents in human cells. Cells with damaged DNA recruit γH2AX (phosphorylated histone H2AX), phosphorylate Chk1 (checkpoint kinase 1) and arrest in the G2-phase of the cell cycle. Strikingly, nearly all cells escape the DNA damage checkpoint and become rounded, by a mechanism that correlates with Chk1 dephosphorylation. The rounded cells are alive and in mitosis as measured by low phospho-Tyr15 Cdk1 (cyclin-dependent kinase 1), high Cdk activity, active Plk1 (Polo-like kinase 1) and high phospho-histone H3 signals. This phenomenon is independent of the type of DNA damage, but is dependent on pharmacologically relevant doses of genotoxicity. Entry into mitosis is likely to be caused by checkpoint adaptation, and the HT-29 cell-based model provides a powerful experimental system in which to explore its molecular basis. We propose that mitosis with damaged DNA is a biologically significant event because it may cause genomic rearrangement in cells that survive genotoxic damage.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2704-2704 ◽  
Author(s):  
Lauren G. Banaszak ◽  
Valentina Giudice ◽  
Xin Zhao ◽  
Zhijie Wu ◽  
Kohei Hosokawa ◽  
...  

Abstract Background:DNA methyltransferase 3A(DNMT3A) is a member of the DNA methyltransferase family primarily involved in de novo gene methylation. Mutations in DNMT3A are associated with a wide range of hematological malignancies, most frequently acute myeloid leukemia (AML). DNMT3A mutations are thought to produce a pre-leukemic state, rendering cells vulnerable to secondary oncogenic mutations and malignant transformation. Mutations in DNMT3A often coexist with secondary lesions in leukemia-related genes such as NPM1 and FLT3 (Ley T et al., N Engl J Med, 2010). Furthermore, healthy individuals harboring DNMT3A-driven clonal hematopoiesis are at increased risk of future hematologic malignancies and all-cause mortality (Jaiswal S et al., N Engl J Med, 2014). Despite these important clinical associations, the mechanisms by which DNMT3A mutations contribute to malignant transformation have not been well-defined. Dnmt3a-knockout (KO)mouse hematopoietic stem cells (HSCs) preferentially self-renew rather than undergo differentiation, leading to their accumulation in the bone marrow (Challen GA et al., Nat Genet, 2011). DNMT3A loss has also been shown to drive hypomethylation and subsequent activation of leukemia-related genes (Lu R et al., Cancer Cell, 2016; Yang L et al., Cancer Cell, 2016). However, these findings have not been recapitulated using human tissue. The goals of this study were thus to determine the transcriptional and biological effects of DNMT3A mutations which contribute towards malignant transformation in human cells. Methods:To elucidate the effects of DNMT3A mutation, we introduced DNMT3A frameshift mutations into K562 cells using the CRISPR/Cas9 gene-editing system. We then performed various functional and genomic assays to better elucidate effects of DNMT3A loss. Results and Discussion:We successfully created 4 DNMT3A-KO K562 clones and 1 clone containing a mutation that produces an altered DNMT3A protein with an intact catalytic domain (DNMT3A-alt). We first assessed effects of DNMT3A loss on cell growth and apoptosis. DNMT3A-KO clones exhibited impaired growth compared to wild-type (WT) cells. DNMT3A-KO clones also displayed significantly increased apoptotic activity after exposure to 5-fluorouracil (5-FU). The DNMT3A-alt clone had similar growth and apoptotic activity to WT cells. We examined how DNMT3A loss impacted differentiation using phorbal 12-myristate 13-acetate (PMA), known to induce megakaryocytic differentiation of K562 cells. After overnight exposure to PMA, DNMT3A-KO clones exhibited less CD61 expression, a marker of megakaryocytic differentiation, than did WT cells. Again, the differentiation of the DNMT3A-alt clonewas comparable to WT. Finally, we performed karyotype analysis to elucidate a potential role of DNMT3A in maintaining genomic integrity. Surprisingly, DNMT3A-KO clones exhibited profound cytogenetic variability and genomic instability compared to WT, with most DNMT3A-KO clones containing dicentric chromosomes and ring forms in multiple spreads (Figure 1). The DNMT3A-alt clone had a karyotype identical to WT. CRISPR/Cas9-edited K562 clones without DNMT3A mutation (transfected WT or tWT) also had identical karyotypes to WT K562. TA cloning and mRNA sequencing were employed to elucidate whether loss of DNMT3A would lead to transcriptome instability. DNMT3A-KOand DNMT3A-altclones exhibited distorted splicing patterns, while tWT cell lines were comparable to WT. To further assess the effect of DNMT3A ablation on genomic integrity, we examined DNA-damage responses by measuring DNA double-stranded breaks (DSBs) after treatment with 5-FU. DNMT3A-KO clones were significantly more susceptible to DNA damage than were WT cells, while the DNMT3A-alt clone exhibited more DNA DSBs compared to WT only at high concentrations of 5-FU. Conclusion:CRISPR/Cas9-mediated DNMT3A-KO K562 cells may be used to model effects of DNMT3A mutations in human cells. Consistent with previous reports, our data suggest that DNMT3A is involved in the differentiation of multipotent progenitors. Novel to this approach, our findings implicate induction of genomic instability as a mechanism by which DNMT3A mutations might predispose to malignancy. Disclosures Hosokawa: Aplastic Anemia and MDS International Foundation: Research Funding. Townsley:Novartis: Research Funding. Young:GSK/Novartis: Research Funding.


2019 ◽  
Vol 20 (7) ◽  
pp. 1746 ◽  
Author(s):  
Jin Cho ◽  
Joon-Seok Choi ◽  
Jae-Ho Lee ◽  
Min-Guk Cho ◽  
Hong-Sook Kim ◽  
...  

The mammalian mediator complex subunit 28 (MED28) is overexpressed in a variety of cancers and it regulates cell migration/invasion and epithelial-mesenchymal transition. However, transcription factors that increase MED28 expression have not yet been identified. In this study, we performed a luciferase reporter assay to identify and characterize the prospective transcription factors, namely E2F transcription factor 1, nuclear respiratory factor 1, E-26 transforming sequence 1, and CCAAT/enhancer-binding protein β, which increased MED28 expression. In addition, the release from the arrest at the G1−S or G2−M phase transition after cell cycle synchronization using thymidine or nocodazole, respectively, showed enhanced MED28 expression at the G1−S transition and mitosis. Furthermore, the overexpression of MED28 significantly decreased the duration of interphase and mitosis. Conversely, a knockdown of MED28 using si-RNA increased the duration of interphase and mitosis. Of note, the overexpression of MED28 significantly increased micronucleus and nuclear budding in HeLa cells. In addition, flow cytometry and fluorescence microscopy analyses showed that the overexpression of MED28 significantly increased aneuploid cells. Taken together, these results suggest that MED28 expression is increased by oncogenic transcription factors and its overexpression disturbs the cell cycle, which results in genomic instability and aneuploidy.


Oncogene ◽  
2007 ◽  
Vol 26 (40) ◽  
pp. 5833-5839 ◽  
Author(s):  
R G Syljuåsen

Oncogene ◽  
1997 ◽  
Vol 14 (8) ◽  
pp. 977-985 ◽  
Author(s):  
S Cohen ◽  
A Regev ◽  
S Lavi

Cell Cycle ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 84-96 ◽  
Author(s):  
Yasunori Akaike ◽  
Taku Chibazakura
Keyword(s):  
Cyclin A ◽  

Sign in / Sign up

Export Citation Format

Share Document