scholarly journals A Model of Evolutionary Selection: The Cardiovascular Protective Function of the Longevity Associated Variant of BPIFB4

2018 ◽  
Vol 19 (10) ◽  
pp. 3229 ◽  
Author(s):  
Francesco Villa ◽  
Albino Carrizzo ◽  
Anna Ferrario ◽  
Anna Maciag ◽  
Monica Cattaneo ◽  
...  

Evolutionary forces select genetic variants that allow adaptation to environmental stresses. The genomes of centenarian populations could recapitulate the evolutionary adaptation model and reveal the secrets of disease resistance shown by these individuals. Indeed, longevity phenotype is supposed to have a genetic background able to survive or escape to age-related diseases. Among these, cardiovascular diseases (CVDs) are the most lethal and their major risk factor is aging and the associated frailty status. One example of genetic evolution revealed by the study of centenarians genome is the four missense Single Nucleotide Polymorphisms (SNPs) haplotype in bactericidal/permeability-increasing fold-containing family B, member 4 (BPIFB4) locus that is enriched in long living individuals: the longevity associated variant (LAV). Indeed, LAV-BPIFB4 is able to improve endothelial function and revascularization through the increase of endothelial nitric oxide synthase (eNOS) dependent nitric oxide production. This review recapitulates the beneficial effects of LAV-BPIFB4 and its therapeutic potential for the treatment of CVDs.

2021 ◽  
Vol 22 (19) ◽  
pp. 10287
Author(s):  
Chih-Hsien Wu ◽  
Yi-Lin Chiu ◽  
Chung-Yueh Hsieh ◽  
Guo-Shiang Tsung ◽  
Lian-Shan Wu ◽  
...  

Cilostazol was suggested to be beneficial to retard in-stent atherosclerosis and prevent stent thrombosis. However, the mechanisms responsible for the beneficial effects of cilostazol are not fully understood. In this study, we attempted to verify the mechanism of the antithrombotic effect of cilostazol. Human umbilical vein endothelial cells (HUVECs) were cultured with various concentrations of cilostazol to verify its impact on endothelial cells. KLF2, silent information regulator transcript-1 (SIRT1), endothelial nitric oxide synthase (eNOS), and endothelial thrombomodulin (TM) expression levels were examined. We found cilostazol significantly activated KLF2 expression and KLF2-related endothelial function, including eNOS activation, Nitric oxide (NO) production, and TM secretion. The activation was regulated by SIRT1, which was also stimulated by cilostazol. These findings suggest that cilostazol may be capable of an antithrombotic and vasculoprotective effect in endothelial cells.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Yanti Octavia ◽  
Elza v Deel ◽  
Monique d Waard ◽  
Martine d Boer ◽  
An Moens ◽  
...  

AIMS: Beneficial effects of aerobic exercise training are widely recognized. However, previously we discovered that the positive effects of exercise depend on the underlying cause of cardiac failure. Here we tested the hypothesis that endothelial nitric oxide synthase (eNOS) dependent regulation of the balance between nitric oxide and superoxide (O2•-) is critically involved in determining the effects of exercise. METHODS: Mice were exposed to 8 weeks of voluntary wheel running exercise training (EX) or sedentary housing (SED) immediately following myocardial infarction (MI), pressure overload from a transverse aortic constriction (TAC), or sham (SH) surgery. Subsequently, left ventricular (LV) ejection fraction (EF) was measured by echocardiography and Picrosirius Red staining was performed to measure collagen content. Additionally, total and NOS-dependent LV O2•- were measured using lucigenin-enhanced chemiluminescence without or with NOS inhibitor, L-NAME. eNOS uncoupling was evaluated by determining eNOS monomer dimer protein ratio and peroxynitrite (ONOO-) levels were measured through luminol-enhanced chemiluminescence. RESULTS: Cardiac dysfunction and fibrosis were ameliorated by exercise in MI but not in TAC mice (Table 1). MI and TAC both increased LV O2•- levels. Strikingly, EX diminished O2•- generation in MI, but exacerbated O2•- generation in TAC (Table 1). Furthermore, the EX-induced increase in O2•- levels in TAC were largely NOS-dependent. Accordingly, MI and TAC-induced eNOS uncoupling was normalized by EX in MI but aggravated in TAC mice (Table 1). Similarly, increased ONOO- levels following MI and TAC were diminished by EX in MI, but exacerbated by EX in TAC (Table 1). CONCLUSIONS: EX reduces eNOS-mediated cardiac oxidative stress in MI. In contrast, beneficial effects of EX are lacking in cardiac pressure-overload following TAC, due to EX-induced aggravation of ONOO- formation, eNOS uncoupling and concomitant oxidative stress.


2008 ◽  
Vol 294 (5) ◽  
pp. H1971-H1977 ◽  
Author(s):  
An L. Moens ◽  
Christiaan J. Vrints ◽  
Marc J. Claeys ◽  
Jean-Pierre Timmermans ◽  
Hunter C. Champion ◽  
...  

Folic acid (FA) is a member of the B-vitamin family with cardiovascular roles in homocysteine regulation and endothelial nitric oxide synthase (eNOS) activity. Its interaction with eNOS is thought to be due to the enhancement of tetrahydrobiopterin bioavailability, helping maintain eNOS in its coupled state to favor the generation of nitric oxide rather than oxygen free radicals. FA also plays a role in the prevention of several cardiac and noncardiac malformations, has potent direct antioxidant and antithrombotic effects, and can interfere with the production of the endothelial-derived hyperpolarizing factor. These multiple mechanisms of action have led to studies regarding the therapeutic potential of FA in cardiovascular disease. To date, studies have demonstrated that FA ameliorates endothelial dysfunction and nitrate tolerance and can improve pathological features of atherosclerosis. These effects appear to be homocysteine independent but rather related to their role in eNOS function. Given the growing evidence that nitric oxide synthase uncoupling plays a major role in many cardiovascular disorders, the potential of exogenous FA as an inexpensive and safe oral therapy is intriguing and is stimulating ongoing investigations.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Aylin Hatice Yamac ◽  
Omer Uysal ◽  
Ziya Ismailoglu ◽  
Mehmet Ertürk ◽  
Mert Celikten ◽  
...  

Objectives. Premature myocardial infarction (PMI) is an uncommon disease, and its incidence varies between 2% and 10%, rising, depending on genetic susceptibility under the influence of lifestyle. The purpose of this study was to investigate the association betweenSIRT1single nucleotide polymorphisms (SNPs), SIRT1, and eNOS (endothelial nitric oxide synthase) protein expressions, total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) in young patients with premature ST-elevation myocardial infarction (STEMI).Methods. Genotyping of the three single-nucleotide polymorphisms (rs7895833 A > G in the promoter region, rs7069102 C > G in intron 4, and rs2273773 C > T in exon 5) inSIRT1gene was performed in 108 consecutive patients (87.0% were men with a mean age of 40.74 ± 3.82 years) suffering from ST-elevation myocardial infarction at the age of ≤45 and 91 control subjects.Results. The risk for myocardial infarction was increased by 2.31 times in carriers of CC or CG genotypes. SIRT1 protein levels were enhanced and endothelial nitric oxide synthase levels were diminished in ST-elevation myocardial infarction patients regardless of the underlying gene variant. There was no correlation between SIRT1 expression and the amount of endothelial nitric oxide synthase, total antioxidant status, total oxidant status, and oxidative stress index levels in patients and in the control group either.Conclusions.SIRT1single-nucleotide polymorphisms were associated with premature myocardial infarction, which affected the SIRT1 and endothelial nitric oxide synthase protein expression, irrespective of the underlyingSIRT1genotype.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3322
Author(s):  
Olga Pechanova ◽  
Ezgi Dayar ◽  
Martina Cebova

Numerous studies document an increased production of reactive oxygen species (ROS) with a subsequent decrease in nitric oxide (NO) bioavailability in different cardiovascular diseases, including hypertension, atherosclerosis, and heart failure. Many natural polyphenols have been demonstrated to decrease ROS generation and/or to induce the endogenous antioxidant enzymatic defense system. Moreover, different polyphenolic compounds have the ability to increase the activity/expression of endothelial nitric oxide synthase (eNOS) with a subsequent enhancement of NO generation. However, as a result of low absorption and bioavailability of natural polyphenols, the beneficial effects of these substances are very limited. Recent progress in delivering polyphenols to the targeted tissues revealed new possibilities for the use of polymeric nanoparticles in increasing the efficiency and reducing the degradability of natural polyphenols. This review focuses on the effects of different natural polyphenolic substances, especially resveratrol, quercetin, curcumin, and cherry extracts, and their ability to bind to polymeric nanoparticles, and summarizes the effects of polyphenol-loaded nanoparticles, mainly in the cardiovascular system.


Sign in / Sign up

Export Citation Format

Share Document