scholarly journals Characterization and Expression Profiling of Neuropeptides and G-Protein-Coupled Receptors (GPCRs) for Neuropeptides in the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Psyllidae)

2018 ◽  
Vol 19 (12) ◽  
pp. 3912 ◽  
Author(s):  
Zhengbing Wang ◽  
Wenwu Zhou ◽  
Muhammad Hameed ◽  
Jiali Liu ◽  
Xinnian Zeng

Neuropeptides are endogenous active substances that widely exist in multicellular biological nerve tissue and participate in the function of the nervous system, and most of them act on neuropeptide receptors. In insects, neuropeptides and their receptors play important roles in controlling a multitude of physiological processes. In this project, we sequenced the transcriptome from twelve tissues of the Asian citrus psyllid, Diaphorina citri Kuwayama. A total of 40 candidate neuropeptide genes and 42 neuropeptide receptor genes were identified. Among the neuropeptide receptor genes, 35 of them belong to the A-family (or rhodopsin-like), four of them belong to the B-family (or secretin-like), and three of them are leucine-rich repeat-containing G-protein-coupled receptors. The expression profile of the 82 genes across developmental stages was determined by qRT-PCR. Our study provides the first investigation on the genes of neuropeptides and their receptors in D. citri, which may play key roles in regulating the physiology and behaviors of D. citri.

2021 ◽  
Vol 12 ◽  
Author(s):  
Han Gao ◽  
Yanxiao Li ◽  
Miao Wang ◽  
Xiaowen Song ◽  
Jing Tang ◽  
...  

G protein-coupled receptors (GPCRs) are the largest and most versatile family of transmembrane receptors in the cell and they play a vital role in the regulation of multiple physiological processes. The family Miridae (Hemiptera: Heteroptera) is one of the most diverse families of insects. Until now, information on GPCRs has been lacking in Miridae. Apolygus lucorum, a representative species of the Miridae, is an omnivorous pest that occurs worldwide and is notorious for causing serious damage to various crops and substantial economic losses. By searching the genome, 133 GPCRs were identified in A. lucorum. Compared with other model insects, we have observed GPCR genes to be remarkably expanded in A. lucorum, especially focusing on biogenic amine receptors and neuropeptide receptors. Among these, there is a novel large clade duplicated from known FMRFamide receptors (FMRFaRs). Moreover, the temporal and spatial expression profiles of the 133 genes across developmental stages were determined by transcriptome analysis. Most GPCR genes showed a low expression level in the whole organism of A. lucorum. However, there were a few highly expressed GPCR genes. The highly expressed LW opsins in the head probably relate to nocturning of A. lucorum, and the expression of Cirl at different times and in different tissues indicated it may be involved in growth and development of A. lucorum. We also found C2 leucine-rich repeat-containing GPCRs (LGRs) were mainly distributed in Hemiptera and Phthiraptera among insects. Our study was the first investigation on GPCRs in A. lucorum and it provided a molecular target for the regulation and control of Miridae pests.


Author(s):  
Meriem Zekri ◽  
Karima Alem ◽  
Labiba Souici-Meslati

The G protein-coupled receptors (GPCRs) include one of the largest and most important families of multifunctional proteins known to molecular biology. They play a key role in cell signaling networks that regulate many physiological processes, such as vision, smell, taste, neurotransmission, secretion, immune responses, metabolism, and cell growth. These proteins are thus very important for understanding human physiology and they are involved in several diseases. Therefore, many efforts in pharmaceutical research are to understand their structures and functions, which is not an easy task, because although thousands GPCR sequences are known, many of them remain orphans. To remedy this, many methods have been developed using methods such as statistics, machine learning algorithms, and bio-inspired approaches. In this article, the authors review the approaches used to develop algorithms for classification GPCRs by trying to highlight the strengths and weaknesses of these different approaches and providing a comparison of their performances.


2005 ◽  
Vol 10 (8) ◽  
pp. 765-779 ◽  
Author(s):  
Wayne R. Leifert ◽  
Amanda L. Aloia ◽  
Olgatina Bucco ◽  
Richard V. Glatz ◽  
Edward J. McMurchie

Signal transduction by G-protein-coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by the receptor leads to activation of a genericmolecular switch involving heterotrimeric G-proteins and guanine nucleotides. Signal transduction has been studied extensively with both cell-based systems and assays comprising isolated signaling components. Interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, highthroughput screening, biosensors, and so on will focus greater attention on assay development to allow for miniaturization, ultra-high throughput and, eventually, microarray/biochip assay formats. Although cell-based assays are adequate for many GPCRs, it is likely that these formatswill limit the development of higher density GPCRassay platforms mandatory for other applications. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR assay platforms adaptable for such applications as microarrays. The authors review current cell-free GPCR assay technologies and molecular biological approaches for construction of novel, functional GPCR assays.


1998 ◽  
Vol 274 (5) ◽  
pp. G792-G796
Author(s):  
Karen McConalogue ◽  
Nigel W. Bunnett

Neuropeptides exert their diverse biological effects by interacting with G protein-coupled receptors (GPCRs). In this review we address the question, What regulates the ability of a target cell, in particular a neuron, to respond to a neuropeptide? Available evidence from studies of many GPCRs in reconstituted systems and transfected cell lines indicates that much of this regulation occurs at the level of the receptor and serves to alter the capacity of the receptor to bind ligands with high affinity and to couple to heterotrimeric G proteins. Although some of the knowledge gained from these studies is applicable to the regulation of neuropeptide receptors on neurons, at present there are far more questions than answers.


2018 ◽  
Vol 47 (1) ◽  
pp. 377-397 ◽  
Author(s):  
Benjamin Stauch ◽  
Vadim Cherezov

G protein–coupled receptors (GPCRs) represent a large superfamily of membrane proteins that mediate cell signaling and regulate a variety of physiological processes in the human body. Structure-function studies of this superfamily were enabled a decade ago by multiple breakthroughs in technology that included receptor stabilization, crystallization in a membrane environment, and microcrystallography. The recent emergence of X-ray free-electron lasers (XFELs) has further accelerated structural studies of GPCRs and other challenging proteins by overcoming radiation damage and providing access to high-resolution structures and dynamics using micrometer-sized crystals. Here, we summarize key technology advancements and major milestones of GPCR research using XFELs and provide a brief outlook on future developments in the field.


2007 ◽  
Vol 293 (4) ◽  
pp. E1021-E1029 ◽  
Author(s):  
Shih-Han Hsu ◽  
Ching-Wei Luo

Although only 16 genes have been identified in mammals, several Gα subunits can be simultaneously activated by G protein-coupled receptors (GPCRs) to modulate their complicated functions. Current GPCR assays are limited in the evaluation of selective Gα activation, thus not allowing a comprehensive pathway screening. Because adenylyl cyclases are directly activated by Gsα and the carboxyl termini of the various Gα proteins determine their receptor coupling specificity, we proposed a set of chimeric Gsα where the COOH-terminal five amino acids are replaced by those of other Gα proteins and used these to dissect the potential Gα linked to a given GPCR. Unlike Gqα, G12α, and Giα outputs, compounding the signals from several Gα members, the chimeric Gsα proteins provide a superior molecular approach that reflects the previously uncharacterized pathways of GPCRs under the same cAMP platform. This is, to our knowledge, the first time allowing verification of the whole spectrum of Gα coupling preference of adenosine A1 receptor, reported to couple to multiple G proteins and modulate many physiological processes. Furthermore, we were able to distinguish the uncharacterized pathways between the two neuromedin U receptors (NMURs), which distribute differently but are stimulated by a common agonist. In contrast to the Gq signals mainly conducted by NMUR1, NMUR2 routed preferentially to the Gi pathways. Dissecting the potential Gα coupling to these GPCRs will promote an understanding of their physiological roles and benefit the pharmaceutical development of agonists/antagonists by exploiting the selective affinity toward a certain Gα subclass.


Sign in / Sign up

Export Citation Format

Share Document