scholarly journals Epigenetic Suppression of the T-box Subfamily 2 (TBX2) in Human Non-Small Cell Lung Cancer

2019 ◽  
Vol 20 (5) ◽  
pp. 1159 ◽  
Author(s):  
Eliana Nehme ◽  
Zahraa Rahal ◽  
Ansam Sinjab ◽  
Athar Khalil ◽  
Hassan Chami ◽  
...  

(1) The TBX2 subfamily of transcription factors (TBXs 2, 3, 4 and 5) are markedly down-regulated in human non-small cell lung cancer (NSCLC) and exert tumor suppressor effects in lung malignancy. Yet, mechanisms underlying suppressed expression of the TBX2 subfamily in NSCLC are elusive. Here, we interrogated probable epigenetic mechanisms in suppressed expression of the TBX2 subfamily in human NSCLC. (2) TBX2 subfamily gene expression and methylation levels in NSCLC and normal lung tissues were surveyed using publicly available RNA-sequence and genome-wide methylation datasets. Methylation β-values of the four genes were statistically compared between NSCLCs and normal lung tissues, correlated with gene expression levels, and interrogated with clinicopathological variables. Expression and methylation levels of TBXs were quantified in NSCLC cells using real-time PCR and methylation-specific PCR assays, respectively. Effects of the DNA methyltransferase inhibitor 5-azacytidine (Aza) on TBX2 subfamily expression were assessed in NSCLC cells. Impact of TBX2 subfamily expression on Aza-treated cells was evaluated by RNA interference. (3) All four TBXs were significantly hypermethylated in NSCLCs relative to normal lung tissues (p < 0.05). Methylation β-values of the genes, with exception of TBX2, were significantly inversely correlated with corresponding mRNA expression levels (p < 0.05). We found no statistically significant differences in hypermethylation levels of the TBX2 subfamily by clinicopathological features including stage and tobacco history. Expression levels of the TBX genes were overall suppressed in NSCLC cells relative to normal alveolar cells. Members of the subfamily were significantly hypermethylated in all tested NSCLC cell lines relative to normal alveolar cells. Treatment with Aza induced the expression of the TBX2 subfamily concomitant with NSCLC cell growth inhibition. Further, simultaneous knockdown of the four TBX genes markedly reduced anti-growth effects of Aza in NSCLC cells. (4) Our study sheds light on new epigenetic profiles in the molecular pathogenesis of human NSCLC.

1996 ◽  
Vol 184 (3) ◽  
pp. 981-992 ◽  
Author(s):  
D A Arenberg ◽  
S L Kunkel ◽  
P J Polverini ◽  
S B Morris ◽  
M D Burdick ◽  
...  

The success of solid tumor growth and metastasis is dependent upon angiogenesis. Neovascularization within the tumor is regulated, in part, by a dual and opposing system of angiogenic and angiostatic factors. We now report that IP-10, a recently described angiostatic factor, as a potent angiostatic factor that regulates non-small cell lung cancer (NSCLC)-derived angiogenesis, tumor growth, and spontaneous metastasis. We initially found significantly elevated levels of IP-10 in freshly isolated human NSCLC samples of squamous cell carcinoma (SCCA). In contrast, levels of IP-10 were equivalent in either normal lung tissue or adenocarcinoma specimens. The neoplastic cells in specimens of SCCA were the predominant cells that appeared to express IP-10 by immunolocalization. Neutralization of IP-10 in SCCA tumor specimens resulted in enhanced tumor-derived angiogenic activity. Using a model of human NSCLC tumorigenesis in SCID mice, we found that NSCLC tumor growth was inversely correlated with levels of plasma or tumor-associated IP-10. IP-10 in vitro functioned as neither an autocrine growth factor nor as an inhibitor of proliferation of the NSCLC cell lines. Reconstitution of intratumor IP-10 for a period of 8 wk resulted in a significant inhibition of tumor growth, tumor-associated angiogenic activity and neovascularization, and spontaneous lung metastases, whereas, neutralization of IP-10 for 10 wk augmented tumor growth. These findings support the notion that tumor-derived IP-10 is an important endogenous angiostatic factor in NSCLC.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 11115-11115
Author(s):  
S. Gottschling ◽  
R. Kuner ◽  
M. Granzow ◽  
E. Chang Xu ◽  
T. Muley ◽  
...  

11115 Background: Tumor-stroma interaction plays a significant role for malignant growth. Results from prostate and breast cancer rodent models show cancerogenic properties of tumor-associated and genetically altered stromal cells (SC) when combined with initiated or normal epithelium (Olumi et al., Cancer Res 1999, Kuperwasser et al., PNAS 2004). However, data on the mechanisms and sequels of tumor-stroma interaction in lung cancer are scanty. Methods: Here, we analyzed the functional and molecular sequels of cross-talk between the non-small cell lung cancer (NSCLC) cell lines A549, H23, and H1703 and primary stromal cells (SC) derived from matched normal lung tissue and tumors of newly diagnosed NSCLC patients. Tumor cells were kept in a non-contact co-culture system with SC and analyzed for alterations in proliferation, colony formation, migration, adhesion, invasion, chemosensitivity and gene expression by Affymetrix HG U133 Plus 2.0 arrays. Results: Exposure to SC altered cellular functions and gene expression profiles related to tumor growth, metastasis and response to therapy. Each cell line showed individual alterations that were hierarchically governed by the (1) type of tumor cell, (2) the SC donor and his histology (3) and the local origin of the SC (normal lung tissue vs. tumor-associated). Conclusions: This in vitro model demonstrates an individual pattern of tumor-stroma interaction in NSCLC that is determined by both, the properties of the tumor cells and those of the stromal environment. Thus, biomarker programs in NSCLC should also consider the stromal compartment. No significant financial relationships to disclose.


Genome ◽  
2008 ◽  
Vol 51 (12) ◽  
pp. 1032-1039 ◽  
Author(s):  
Jennifer M. Campbell ◽  
William W. Lockwood ◽  
Timon P.H. Buys ◽  
Raj Chari ◽  
Bradley P. Coe ◽  
...  

Lung cancer accounts for over a quarter of cancer deaths, with non-small cell lung cancer (NSCLC) accounting for approximately 80% of cases. Several genome studies have been undertaken in both cell models of NSCLC and clinical samples to identify alterations underlying disease behaviour, and many have identified recurring aberrations of chromosome 7. The presence of recurring chromosome 7 alterations that do not span the well-studied oncogenes EGFR (at 7p11.2) and MET (at 7q31.2) has raised the hypothesis of additional genes on this chromosome that contribute to tumourigenesis. In this study, we demonstrated that multiple loci on chromosome 7 are indeed amplified in NSCLC, and through integrative analysis of gene dosage alterations and parallel gene expression changes, we identified new lung cancer oncogene candidates, including FTSJ2, NUDT1, TAF6, and POLR2J. Activation of these key genes was confirmed in panels of clinical lung tumour tissue as compared with matched normal lung tissue. The detection of gene activation in multiple cohorts of samples strongly supports the presence of key genes involved in lung cancer that are distinct from the EGFR and MET loci on chromosome 7.


2016 ◽  
Vol 113 (25) ◽  
pp. 6955-6960 ◽  
Author(s):  
Alexander E. Kudinov ◽  
Alexander Deneka ◽  
Anna S. Nikonova ◽  
Tim N. Beck ◽  
Young-Ho Ahn ◽  
...  

Non-small cell lung cancer (NSCLC) has a 5-y survival rate of ∼16%, with most deaths associated with uncontrolled metastasis. We screened for stem cell identity-related genes preferentially expressed in a panel of cell lines with high versus low metastatic potential, derived from NSCLC tumors of KrasLA1/+;P53R172HΔG/+ (KP) mice. The Musashi-2 (MSI2) protein, a regulator of mRNA translation, was consistently elevated in metastasis-competent cell lines. MSI2 was overexpressed in 123 human NSCLC tumor specimens versus normal lung, whereas higher expression was associated with disease progression in an independent set of matched normal/primary tumor/lymph node specimens. Depletion of MSI2 in multiple independent metastatic murine and human NSCLC cell lines reduced invasion and metastatic potential, independent of an effect on proliferation. MSI2 depletion significantly induced expression of proteins associated with epithelial identity, including tight junction proteins [claudin 3 (CLDN3), claudin 5 (CLDN5), and claudin 7 (CLDN7)] and down-regulated direct translational targets associated with epithelial–mesenchymal transition, including the TGF-β receptor 1 (TGFβR1), the small mothers against decapentaplegic homolog 3 (SMAD3), and the zinc finger proteins SNAI1 (SNAIL) and SNAI2 (SLUG). Overexpression of TGFβRI reversed the loss of invasion associated with MSI2 depletion, whereas overexpression of CLDN7 inhibited MSI2-dependent invasion. Unexpectedly, MSI2 depletion reduced E-cadherin expression, reflecting a mixed epithelial–mesenchymal phenotype. Based on this work, we propose that MSI2 provides essential support for TGFβR1/SMAD3 signaling and contributes to invasive adenocarcinoma of the lung and may serve as a predictive biomarker of NSCLC aggressiveness.


2019 ◽  
Vol 22 (4) ◽  
pp. 238-244 ◽  
Author(s):  
Gang Chen ◽  
Bo Ye

Purpose: Epithelial-to-Mesenchymal Transition (EMT) was reported to play a key role in the development of Non-Small Cell Lung Cancer (NSCLC). The process of EMT is regulated by the changes of miRNAs expression. However, it is still unknown which miRNA changed the most in the process of canceration and whether these changes played a role in tumor development. Methods: A total of 36 SCLC patients treated in our hospital between 11th, 2015 and 10th, 2017 were enrolled. The samples of cancer tissues and paracancer tissues of patients were collected and analyzed. Then, the miRNAs in normal lung cells and NSCLC cells were also analyzed. In the presence of TGF-β, we transfected the miRNA mimics or inhibitor into NSCLC cells to investigate the role of the significantly altered miRNAs in cell migration and invasion and in the process of EMT. Results: MiR-330-3p was significantly up-regulated in NSCLC cell lines and tissues and miRNA- 205 was significantly down-regulated in NSCLC cell lines and NSCLC tissues. Transfected miRNA-205 mimics or miRMA-330-3p inhibitor inhibited the migration and invasion of NCIH1975 cell and restrained TGF-β-induced EMT in NSCLC cells. Conclusion: miRNA-330-3p and miRNA-205 changed the most in the process of canceration in NSCLC. Furthermore, miR-330-3p promoted cell invasion and metastasis in NSCLC probably by promoting EMT and miR-205 could restrain NSCLC likely by suppressing EMT.


2020 ◽  
Vol 20 (17) ◽  
pp. 2074-2081
Author(s):  
Onur Tokgun ◽  
Pervin E. Tokgun ◽  
Kubilay Inci ◽  
Hakan Akca

Background: Small Cell Lung Cancer (SCLC) is a highly aggressive malignancy. MYC family oncogenes are amplified and overexpressed in 20% of SCLCs, showing that MYC oncogenes and MYC regulated genes are strong candidates as therapeutic targets for SCLC. c-MYC plays a fundamental role in cancer stem cell properties and malignant transformation. Several targets have been identified by the activation/repression of MYC. Deregulated expression levels of lncRNAs have also been observed in many cancers. Objective: The aim of the present study is to investigate the lncRNA profiles which depend on MYC expression levels in SCLC. Methods: Firstly, we constructed lentiviral vectors for MYC overexpression/inhibition. MYC expression is suppressed by lentiviral shRNA vector in MYC amplified H82 and N417 cells, and overexpressed by lentiviral inducible overexpression vector in MYC non-amplified H345 cells. LncRNA cDNA is transcribed from total RNA samples, and 91 lncRNAs are evaluated by qRT-PCR. Results: We observed that N417, H82 and H345 cells require MYC for their growth. Besides, MYC is not only found to regulate the expressions of genes related to invasion, stem cell properties, apoptosis and cell cycle (p21, Bcl2, cyclinD1, Sox2, Aldh1a1, and N-Cadherin), but also found to regulate lncRNAs. With this respect, expressions of AK23948, ANRIL, E2F4AS, GAS5, MEG3, H19, L1PA16, SFMBT2, ZEB2NAT, HOTAIR, Sox2OT, PVT1, and BC200 were observed to be in parallel with MYC expression, whereas expressions of Malat1, PTENP1, Neat1, UCA1, SNHG3, and SNHG6 were inversely correlated. Conclusion: Targeting MYC-regulated genes as a therapeutic strategy can be important for SCLC therapy. This study indicated the importance of identifying MYC-regulated lncRNAs and that these can be utilized to develop a therapeutic strategy for SCLC.


Lung Cancer ◽  
2000 ◽  
Vol 29 (1) ◽  
pp. 193
Author(s):  
M Higashiyama ◽  
K Kodama ◽  
H Yokouchi ◽  
K Takami ◽  
Y Miyoshi ◽  
...  

2017 ◽  
Vol 62 (2) ◽  
pp. 295-301 ◽  
Author(s):  
Biao Yang ◽  
Xinming Li ◽  
Dongmei Chen ◽  
Chunling Xiao

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ling Cai ◽  
Hongyu Liu ◽  
Fang Huang ◽  
Junya Fujimoto ◽  
Luc Girard ◽  
...  

AbstractSmall cell lung cancer (SCLC) is classified as a high-grade neuroendocrine (NE) tumor, but a subset of SCLC has been termed “variant” due to the loss of NE characteristics. In this study, we computed NE scores for patient-derived SCLC cell lines and xenografts, as well as human tumors. We aligned NE properties with transcription factor-defined molecular subtypes. Then we investigated the different immune phenotypes associated with high and low NE scores. We found repression of immune response genes as a shared feature between classic SCLC and pulmonary neuroendocrine cells of the healthy lung. With loss of NE fate, variant SCLC tumors regain cell-autonomous immune gene expression and exhibit higher tumor-immune interactions. Pan-cancer analysis revealed this NE lineage-specific immune phenotype in other cancers. Additionally, we observed MHC I re-expression in SCLC upon development of chemoresistance. These findings may help guide the design of treatment regimens in SCLC.


Sign in / Sign up

Export Citation Format

Share Document