shrna vector
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Urban J. Scheuring ◽  
Steffi Ritter ◽  
Daniel Martin ◽  
Gabriele Schackert ◽  
Achim Temme ◽  
...  

Abstract Introduction In human glioblastomas, glioma pathogenesis-related protein1 (GliPR1) is overexpressed and appears to be an oncoprotein. We investigated whether GliPR1 knockdown in glioma cells by RNA interference exerts anti-glioma effects. Methods Experiments used human glioblastoma cell lines transduced with GliPR1 shRNA (sh#301, sh#258). Transduction produced stringent doxycycline-dependent GliPR1 knockdown in clones (via lentiviral “all-in-one” TetOn-shRNA vector) or stable GliPR1 knockdown in polyclonal cells (via constitutive retroviral-shRNA vector). In vitro assessments included cellular proliferation and clonogenic survival. In vivo assessments in tumor-bearing nude mice included tumor growth and survival. Results Using doxycycline-dependent GliPR1 knockdown, shGliPR1-transduced U87-MG clones demonstrated reductions in cellular proliferation in the presence versus absence of doxycycline. Using stable GliPR1 knockdown, polyclonal shGliPR1-transduced U87-MG, A172, and U343-MG cells consistently showed decreased clonogenic survival and induced apoptosis (higher proportion of early apoptotic cells) compared to control shLuc-transduced cells. In tumor-bearing nude mice, using doxycycline-dependent GliPR1 knockdown, subcutaneous and cranial transplantation of the U87-MG clone 980-5 (transduced with GliPR1 sh#301) resulted in reduced subcutaneous tumor volume and cerebral tumor area in doxycycline-treated mice versus those left untreated. Using stable GliPR1 knockdown, nude mice cranially transplanted with polyclonal U87-MG cells transduced with GliPR1 sh#258 had significantly prolonged survival compared to mice cranially transplanted with control shLuc-transduced cells (41 versus 26 days; P < 0.001). Conclusion GliPR1 knockdown in glioma cells decreased cellular proliferation, decreased clonogenic survival, and induced apoptosis in vitro, and reduced glioblastoma tumor growth and prolonged survival in vivo. These findings support that GliPR1 may have potential value as a therapeutic target.


Digestion ◽  
2021 ◽  
pp. 1-14
Author(s):  
Sayo Takahashi ◽  
Koichi Okamoto ◽  
Toshihito Tanahashi ◽  
Shota Fujimoto ◽  
Tadahiko Nakagawa ◽  
...  

<b><i>Background/Aims:</i></b> Sessile serrated adenomas/polyps (SSA/Ps) are a putative precursor lesion of colon cancer. Although the relevance of DNA hypermethylation in the SSA/P-cancer sequence is well documented, the role of DNA hypomethylation is unknown. We investigated the biological relevance of DNA hypomethylation in the SSA/P-cancer sequence by using 3-dimensional organoids of SSA/P. <b><i>Methods:</i></b> We first analyzed hypomethylated genes using datasets from our previous DNA methylation array analysis on 7 SSA/P and 2 cancer in SSA/P specimens. Expression levels of hypomethylated genes in SSA/P specimens were determined by RT-PCR and immunohistochemistry. We established 3-dimensional SSA/P organoids and performed knockdown experiments using a lentiviral shRNA vector. DNA hypomethylation at CpG sites of the gene was quantitated by MassARRAY analysis. <b><i>Results:</i></b> The mean number of hypomethylated genes in SSA/P and cancer in SSA/P was 41.6 ± 27.5 and 214 ± 19.8, respectively, showing a stepwise increment in hypomethylation during the SSA/P-cancer sequence. S100P, S100α2, PKP3, and MUC2 were most commonly hypomethylated in SSA/P specimens. The mRNA and protein expression levels of S100P, S100α2, and MUC2 were significantly elevated in SSA/P compared with normal colon tissues, as revealed by RT-PCR and immunohistochemistry, respectively. Among these, mRNA and protein levels were highest for S100P. Knockdown of the S100P gene using a lentiviral shRNA vector in 3-dimensional SSA/P organoids inhibited cell growth by &#x3e;50% (<i>p</i> &#x3c; 0.01). The mean diameter of SSA/P organoids with S100P gene knockdown was significantly smaller compared with control organoids. MassARRAY analysis of DNA hypomethylation in the S100P gene revealed significant hypomethylation at specific CpG sites in intron 1, exon 1, and the 5′-flanking promoter region. <b><i>Conclusion:</i></b> These results suggest that DNA hypomethylation, including S100P hypomethylation, is supposedly associated with the SSA/P-cancer sequence. S100P overexpression via DNA hypomethylation plays an important role in promoting cell growth in the SSA/P-cancer sequence.


2020 ◽  
Vol 20 (17) ◽  
pp. 2074-2081
Author(s):  
Onur Tokgun ◽  
Pervin E. Tokgun ◽  
Kubilay Inci ◽  
Hakan Akca

Background: Small Cell Lung Cancer (SCLC) is a highly aggressive malignancy. MYC family oncogenes are amplified and overexpressed in 20% of SCLCs, showing that MYC oncogenes and MYC regulated genes are strong candidates as therapeutic targets for SCLC. c-MYC plays a fundamental role in cancer stem cell properties and malignant transformation. Several targets have been identified by the activation/repression of MYC. Deregulated expression levels of lncRNAs have also been observed in many cancers. Objective: The aim of the present study is to investigate the lncRNA profiles which depend on MYC expression levels in SCLC. Methods: Firstly, we constructed lentiviral vectors for MYC overexpression/inhibition. MYC expression is suppressed by lentiviral shRNA vector in MYC amplified H82 and N417 cells, and overexpressed by lentiviral inducible overexpression vector in MYC non-amplified H345 cells. LncRNA cDNA is transcribed from total RNA samples, and 91 lncRNAs are evaluated by qRT-PCR. Results: We observed that N417, H82 and H345 cells require MYC for their growth. Besides, MYC is not only found to regulate the expressions of genes related to invasion, stem cell properties, apoptosis and cell cycle (p21, Bcl2, cyclinD1, Sox2, Aldh1a1, and N-Cadherin), but also found to regulate lncRNAs. With this respect, expressions of AK23948, ANRIL, E2F4AS, GAS5, MEG3, H19, L1PA16, SFMBT2, ZEB2NAT, HOTAIR, Sox2OT, PVT1, and BC200 were observed to be in parallel with MYC expression, whereas expressions of Malat1, PTENP1, Neat1, UCA1, SNHG3, and SNHG6 were inversely correlated. Conclusion: Targeting MYC-regulated genes as a therapeutic strategy can be important for SCLC therapy. This study indicated the importance of identifying MYC-regulated lncRNAs and that these can be utilized to develop a therapeutic strategy for SCLC.


2020 ◽  
Author(s):  
Fatemeh T. Shamsabadi ◽  
Mohammad Reza Akbari Eidgahi ◽  
Ahad Yamchi ◽  
Corrado Guarnaccia ◽  
Majid Shahbazi

Abstract Background: The G1 cyclins are the most potent candidates in the pathogenesis of breast cancer. This study was designed to analyze the synergistic effect of G1 cyclins silencing on the proliferation of breast cancer cells and to identify G1 cyclins-molecular targets by proteomics approach.Methods: The MDA-MB-231 cells were transfected by a dual shRNA vector targeting G1 cyclins through a bidirectional survivin promoter. Silencing efficacy and cell proliferation were evaluated by real-time PCR, Western blot, and MTS assays, respectively. The protein expression profile was evaluated by 2D gel electrophoresis and mass spectroscopy. Further, bioinformatics tools were applied to identify the molecular targets by G1 cyclins and their possible biological consequences.Results: In response to G1 cyclins silencing, the proliferation of cells exposed to the dual shRNA vector decreased significantly at 72 h post-transfection. The reduction of G1 cyclins proteins was following their mRNA expression level as well. Protein signature of cells was altered in response to the silencing of G1 cyclins, 13 up-regulated, and seven down-regulated. Network analysis of G1 cyclins-regulated proteins identified ACTB, HSP90AA1, ALB, and HSPA5 as the hub genes according to the degree method.The regulated proteins by G1 cyclins participate in cancer-related pathways such as PI3K-Akt signaling pathway and pathways in cancer (HSP90AA1; HSP90AB1; HSP9B1), HIF-1 signaling pathway (LDHA; ALDOA; PGK1), apoptosis and proteoglycans in cancer (ACTB).Conclusions: We identified the G1 cyclins-regulated proteins and their mode of action in the pathogenesis of breast cancer. Our findings suggested that G1 cyclins participate in various biological functions. Meanwhile, it offers a new perception of the interactions among G1 cyclins-regulated proteins to identify targeted treatment. It follows-up research in the field of breast cancer.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3103-3103
Author(s):  
David Edward Gilham ◽  
Simon Bornschein ◽  
Lorraine Springuel ◽  
Alexandre Michaux ◽  
Mikhail Steklov ◽  
...  

3103 Background: Engineered T cells expressing chimeric antigen receptors (CAR) are now delivering clinically relevant results in patients with advanced hematological malignancies. One critical area for future development is to modulate gene expression thereby endowing the engineered T cell with specific desired features that enhance anti-tumor activity. Methods: Short-hairpin RNA (shRNA) were cloned individually or multiplexed within micro-RNA scaffolds that enabled the co-expression of the individual shRNA with a CAR and a selectable marker all driven by a PolII promoter within a single retroviral vector. Primary human T cells transduced with the CAR-shRNA vectors were selected, expanded in vitro, subjected to negative selection to eliminate any remaining TCR+ cells and examined for target gene expression and functional activity. Results: A 500bp DNA fragment incorporating a shRNA-specific for CD3ζ cloned into a retroviral vectoreffectively knocked down expression of CD3ζ in transduced BCMA-specific CAR T cells. The consequent reduction of cell surface TCR expression resulted in minimal cytokine production upon TCR stimulation in vitro providing a potential allogeneic CAR T approach. These CAR T cells showed no demonstrable evidence of GvHD induction when infused in NSG mice yet maintained BCMA-specific CAR activity in KMS-11 and RPMI-8226 established myeloma models. Initial studies further confirmed that two shRNA could be expressed from a single retroviral vector to modulate the expression of multiple genes. Further engineering of the microRNA framework reduced the size of the transgene load to 394bp while enabling the expression of up to 4 shRNA within a single vector. shRNA specific for CD3ζ, beta-2-microglobulin, CD52 and diacylglycerol kinase alpha were engineered into the framework downstream of a CD19-CAR. Transduced Jurkat cells showed concurrent knockdown of the respective gene products at the mRNA and protein levels. Conclusions: A first-in-human clinical trial evaluating the first-generation single shRNA-vector in the context of a BCMA-targeting CAR as a non-gene edited approach to allogeneic CAR T cell therapy will be initiated in 2020. The proof of principle study here shows that multiple shRNAs are active within a single viral vector thereby avoiding the need for bespoke individual clinical reagents to target multiple genes. The multiplexed shRNA vector system is now in further development to explore whether this strategy can enhance the therapeutic potential of CAR T cells.


PLoS ONE ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. e0190981 ◽  
Author(s):  
Mari Merentie ◽  
Riina Rissanen ◽  
Line Lottonen-Raikaslehto ◽  
Jenni Huusko ◽  
Erika Gurzeler ◽  
...  
Keyword(s):  

2017 ◽  
Vol 13 (3) ◽  
pp. 1553-1562
Author(s):  
Yanjie Weng ◽  
Ying Shi ◽  
Xi Xia ◽  
Wenjuan Zhou ◽  
Hongyan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document