scholarly journals Altered Glutamate Receptor Ionotropic Delta Subunit 2 Expression in Stau2-Deficient Cerebellar Purkinje Cells in the Adult Brain

2019 ◽  
Vol 20 (7) ◽  
pp. 1797 ◽  
Author(s):  
Helena F. Pernice ◽  
Rico Schieweck ◽  
Mehrnoosh Jafari ◽  
Tobias Straub ◽  
Martin Bilban ◽  
...  

Staufen2 (Stau2) is an RNA-binding protein that is involved in dendritic spine morphogenesis and function. Several studies have recently investigated the role of Stau2 in the regulation of its neuronal target mRNAs, with particular focus on the hippocampus. Here, we provide evidence for Stau2 expression and function in cerebellar Purkinje cells. We show that Stau2 downregulation (Stau2GT) led to an increase of glutamate receptor ionotropic delta subunit 2 (GluD2) in Purkinje cells when animals performed physical activity by voluntary wheel running compared with the age-matched wildtype (WT) mice (C57Bl/6J). Furthermore, Stau2GT mice showed lower performance in motor coordination assays but enhanced motor learning abilities than did WT mice, concomitantly with an increase in dendritic GluD2 expression. Together, our results suggest the novel role of Stau2 in Purkinje cell synaptogenesis in the mouse cerebellum.

2016 ◽  
Vol 44 (5) ◽  
pp. 1321-1337 ◽  
Author(s):  
Andrew R. Clark ◽  
Jonathan L.E. Dean

Twenty years ago, the first description of a tristetraprolin (TTP) knockout mouse highlighted the fundamental role of TTP in the restraint of inflammation. Since then, work from several groups has generated a detailed picture of the expression and function of TTP. It is a sequence-specific RNA-binding protein that orchestrates the deadenylation and degradation of several mRNAs encoding inflammatory mediators. It is very extensively post-translationally modified, with more than 30 phosphorylations that are supported by at least two independent lines of evidence. The phosphorylation of two particular residues, serines 52 and 178 of mouse TTP (serines 60 and 186 of the human orthologue), has profound effects on the expression, function and localisation of TTP. Here, we discuss the control of TTP biology via its phosphorylation and dephosphorylation, with a particular focus on recent advances and on questions that remain unanswered.


2021 ◽  
Author(s):  
Huijie Feng ◽  
Yukun Yuan ◽  
Michael R Williams ◽  
Alex Roy ◽  
Jeffrey Leipprandt ◽  
...  

GNAO1 encodes Gαo, a heterotrimeric G protein alpha subunit in the Gi/o family. In this report, we used a Gnao1 mouse model G203R previously described as a gain-of-function Gnao1 mutant with movement abnormalities and enhanced seizure susceptibility. Here, we report an unexpected second mutation resulting in a loss-of-function Gαo protein and describe alterations in central synaptic transmission. Whole cell patch clamp recordings from Purkinje cells (PCs) in acute cerebellar slices from Gnao1 mutant mice showed significantly lower frequencies of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) compared to WT mice. There was no significant change in sEPSCs or mEPSCs. Whereas mIPSC frequency was reduced, mIPSC amplitudes were not affected, suggesting a presynaptic mechanism of action. A modest decrease in the number of molecular layer interneurons was insufficient to explain the magnitude of IPSC suppression. Paradoxically, Gi/o inhibitors (pertussis toxin), enhanced the mutant-suppressed mIPSC frequency and eliminated the difference between WT and Gnao1 mice. While GABAB receptor regulates mIPSCs, neither agonists nor antagonists of this receptor altered function in the mutant mouse PCs. This study is the first electrophysiological investigation of the role of Gi/o protein in cerebellar synaptic transmission using an animal model with a loss-of-function Gi/o protein.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Hui Ye ◽  
Shamsideen A Ojelade ◽  
David Li-Kroeger ◽  
Zhongyuan Zuo ◽  
Liping Wang ◽  
...  

Retromer, including Vps35, Vps26, and Vps29, is a protein complex responsible for recycling proteins within the endolysosomal pathway. Although implicated in both Parkinson’s and Alzheimer’s disease, our understanding of retromer function in the adult brain remains limited, in part because Vps35 and Vps26 are essential for development. In Drosophila, we find that Vps29 is dispensable for embryogenesis but required for retromer function in aging adults, including for synaptic transmission, survival, and locomotion. Unexpectedly, in Vps29 mutants, Vps35 and Vps26 proteins are normally expressed and associated, but retromer is mislocalized from neuropil to soma with the Rab7 GTPase. Further, Vps29 phenotypes are suppressed by reducing Rab7 or overexpressing the GTPase activating protein, TBC1D5. With aging, retromer insufficiency triggers progressive endolysosomal dysfunction, with ultrastructural evidence of impaired substrate clearance and lysosomal stress. Our results reveal the role of Vps29 in retromer localization and function, highlighting requirements for brain homeostasis in aging.


2020 ◽  
Vol 21 (3) ◽  
pp. 1151 ◽  
Author(s):  
Shannon E. Dougherty ◽  
Austin O. Maduka ◽  
Toshifumi Inada ◽  
Gustavo M. Silva

The eukaryotic proteome has to be precisely regulated at multiple levels of gene expression, from transcription, translation, and degradation of RNA and protein to adjust to several cellular conditions. Particularly at the translational level, regulation is controlled by a variety of RNA binding proteins, translation and associated factors, numerous enzymes, and by post-translational modifications (PTM). Ubiquitination, a prominent PTM discovered as the signal for protein degradation, has newly emerged as a modulator of protein synthesis by controlling several processes in translation. Advances in proteomics and cryo-electron microscopy have identified ubiquitin modifications of several ribosomal proteins and provided numerous insights on how this modification affects ribosome structure and function. The variety of pathways and functions of translation controlled by ubiquitin are determined by the various enzymes involved in ubiquitin conjugation and removal, by the ubiquitin chain type used, by the target sites of ubiquitination, and by the physiologic signals triggering its accumulation. Current research is now elucidating multiple ubiquitin-mediated mechanisms of translational control, including ribosome biogenesis, ribosome degradation, ribosome-associated protein quality control (RQC), and redox control of translation by ubiquitin (RTU). This review discusses the central role of ubiquitin in modulating the dynamism of the cellular proteome and explores the molecular aspects responsible for the expanding puzzle of ubiquitin signals and functions in translation.


2011 ◽  
Vol 31 (9) ◽  
pp. 3362-3374 ◽  
Author(s):  
M. Yamasaki ◽  
T. Miyazaki ◽  
H. Azechi ◽  
M. Abe ◽  
R. Natsume ◽  
...  

2019 ◽  
Vol 11 (10) ◽  
pp. 880-885 ◽  
Author(s):  
Hendrik Täuber ◽  
Stefan Hüttelmaier ◽  
Marcel Köhn

Abstract A large variety of eukaryotic small structured POLIII-derived non-coding RNAs (ncRNAs) have been described in the past. However, for only few, e.g. 7SL and H1/MRP families, cellular functions are well understood. For the vast majority of these transcripts, cellular functions remain unknown. Recent findings on the role of Y RNAs and other POLIII-derived ncRNAs suggest an evolutionarily conserved function of these ncRNAs in the assembly and function of ribonucleoprotein complexes (RNPs). These RNPs provide cellular `machineries’, which are essential for guiding the fate and function of a variety of RNAs. In this review, we summarize current knowledge on the role of POLIII-derived ncRNAs in the assembly and function of RNPs. We propose that these ncRNAs serve as scaffolding factors that `chaperone’ RNA-binding proteins (RBPs) to form functional RNPs. In addition or associated with this role, some small ncRNAs act as molecular decoys impairing the RBP-guided control of RNA fate by competing with other RNA substrates. This suggests that POLIII-derived ncRNAs serve essential and conserved roles in the assembly of larger RNPs and thus the control of gene expression by indirectly guiding the fate of mRNAs and lncRNAs.


2007 ◽  
Vol 58 ◽  
pp. S134
Author(s):  
Ryoichi Nakagami ◽  
Kazuhisa Kohda ◽  
Wataru Kakegawa ◽  
Tetsuro Kondo ◽  
Michisuke Yuzaki

Sign in / Sign up

Export Citation Format

Share Document