scholarly journals Role of Leukotriene B4 Receptor-2 in Mast Cells in Allergic Airway Inflammation

2019 ◽  
Vol 20 (12) ◽  
pp. 2897 ◽  
Author(s):  
Sun-Young Kwon ◽  
Jae-Hong Kim

Mast cells are effector cells in the immune system that play an important role in the allergic airway inflammation. Recently, it was reported that BLT2, a low-affinity leukotriene (LT) B4 receptor, plays a pivotal role in the pathogenesis of allergic airway inflammation through its action in mast cells. We observed that highly elevated expression levels of BLT2 are critical for the pathogenesis leading to allergic airway inflammation, and that if BLT2 expression is downregulated by siBLT2-mediated knockdown, allergic inflammation is dramatically alleviated. Furthermore, we demonstrated that BLT2 mediates the synthesis of vascular endothelial growth factor (VEGF) and Th2 cytokines, such as interleukin (IL)-13, in mast cells during allergic inflammation. Based on the critical roles of BLT2 in mast cells in allergic inflammation, anti-BLT2 strategies could contribute to the development of new therapies for allergic airway inflammation.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Mimi Mu ◽  
Peiyu Gao ◽  
Jing He ◽  
Xiangnan Tao ◽  
Chuanwang Song

Professional phagocytes such as dendritic cells and macrophages can ingest particles larger than 0.5 μm in diameter. Epithelial cells are nonprofessional phagocytes that cannot ingest pathogenic microorganisms, but they can ingest apoptotic cells. Inhibition of the engulfment of apoptotic cells by the airway epithelium can cause severe airway inflammation. Vascular endothelial growth factor (VEGF) is an angiogenesis-promoting factor that can mediate allergic airway inflammation and can promote airway epithelial cells (AECs) proliferation, but it is not clear whether it affects the engulfment of apoptotic cells by AECs. In the present study, VEGF inhibited engulfment of apoptotic cells by AECs via binding to VEGF receptor(R)2. This inhibitory effect of VEGF was not influenced by masking of phosphatidylserine (PS) on the surface of apoptotic cells and was partially mediated by the PI3K-Akt signaling pathway. VEGF inhibition of phagocytosis involved polymerization of actin and downregulation of the expression of the phagocytic-associated protein Beclin-1 in AECs. Since engulfment of apoptotic cells by AECs is an important mechanism for airway inflammation regression, VEGF inhibition of the engulfment of apoptotic cells by airway epithelial cells may be important for mediating allergic airway inflammation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sjoerd T. T. Schetters ◽  
Martijn J. Schuijs

Eosinophils are typically a minority population of circulating granulocytes being released from the bone-marrow as terminally differentiated cells. Besides their function in the defense against parasites and in promoting allergic airway inflammation, regulatory functions have now been attributed to eosinophils in various organs. Although eosinophils are involved in the inflammatory response to allergens, it remains unclear whether they are drivers of the asthma pathology or merely recruited effector cells. Recent findings highlight the homeostatic and pro-resolving capacity of eosinophils and raise the question at what point in time their function is regulated. Similarly, eosinophils from different physical locations display phenotypic and functional diversity. However, it remains unclear whether eosinophil plasticity remains as they develop and travel from the bone marrow to the tissue, in homeostasis or during inflammation. In the tissue, eosinophils of different ages and origin along the inflammatory trajectory may exhibit functional diversity as circumstances change. Herein, we outline the inflammatory time line of allergic airway inflammation from acute, late, adaptive to chronic processes. We summarize the function of the eosinophils in regards to their resident localization and time of recruitment to the lung, in all stages of the inflammatory response. In all, we argue that immunological differences in eosinophils are a function of time and space as the allergic inflammatory response is initiated and resolved.


2014 ◽  
Vol 36 (5) ◽  
pp. 913-917 ◽  
Author(s):  
Yang Han ◽  
Hongsheng Ouyang ◽  
Dongsheng Che ◽  
Xianju Chen ◽  
Yongye Huang ◽  
...  

2019 ◽  
Vol 316 (1) ◽  
pp. L269-L279 ◽  
Author(s):  
Tianwen Lai ◽  
Mindan Wu ◽  
Chao Zhang ◽  
Luanqing Che ◽  
Feng Xu ◽  
...  

Histone deacetylase (HDAC)2 is expressed in airway epithelium and plays a pivotal role in inflammatory cells. However, the role of HDAC2 in allergic airway inflammation remains poorly understood. In the present study, we determined the role of HDAC2 in airway inflammation using in vivo models of house dust mite (HDM)-induced allergic inflammation and in vitro cultures of human bronchial epithelial (HBE) cells exposed to HDM, IL-17A, or both. We observed that HDM-challenged Hdac2+/− mice exhibited substantially enhanced infiltration of inflammatory cells. Higher levels of T helper 2 cytokines and IL-17A expression were found in lung tissues of HDM-challenged Hdac2+/− mice. Interestingly, IL-17A deletion or anti-IL-17A treatment reversed the enhanced airway inflammation induced by HDAC2 impairment. In vitro, HDM and IL-17A synergistically decreased HDAC2 expression in HBE cells. HDAC2 gene silencing further enhanced HDM- and/or IL-17A-induced inflammatory cytokines in HBE cells. HDAC2 overexpresion or blocking IL-17A gene expression restored the enhanced inflammatory cytokines. Collectively, these results support a protective role of HDAC2 in HDM-induced airway inflammation by suppressing IL-17A production and might suggest that activation of HDAC2 and/or inhibition of IL-17A production could prevent the development of allergic airway inflammation.


Sign in / Sign up

Export Citation Format

Share Document