scholarly journals Discovery of New Inhibitors of Transforming Growth Factor-Beta Type 1 Receptor by Utilizing Docking and Structure-Activity Relationship Analysis

2019 ◽  
Vol 20 (17) ◽  
pp. 4090 ◽  
Author(s):  
Jiang ◽  
Deng

The transforming growth factor-beta (TGF-β) plays an important role in pathological fibrosis and cancer transformation. Therefore, the inhibition of the TGF-β signaling pathway has therapeutic potential in the treatment of cancer. In this study, the binding modes between 47 molecules with a pyrrolotriazine-like backbone structure and transforming growth factor-beta type 1 receptor (TβR1) were simulated by molecular docking using Discovery Studio software, and their structure–activity relationships were analyzed. On the basis of the analysis of the binding modes of ligands in the active site and the structure–activity relationships, 29,254 new compounds were designed for virtual screening. According to the aforementioned analyses and Lipinski’s rule of five, five new compounds (CQMU1901–1905) with potential activity were screened through molecular docking. Among them, CQMU1905 is an attractive molecule composed of 5-fluorouracil (5-FU), 6-mercaptopurine (6-MP), and 5-azacytosine. Interestingly, 5-FU, 6-MP, and 5-azacytidine are often used as anti-metabolic agents in cancer treatment. Compared with existing compounds, CQMU1901–1905 can interact with target proteins more effectively and have good potential for modification, making them worthy of further study.

1988 ◽  
Vol 8 (5) ◽  
pp. 2229-2232 ◽  
Author(s):  
A M Brunner ◽  
L E Gentry ◽  
J A Cooper ◽  
A F Purchio

Analyses of cDNA clones coding for simian type 1 transforming growth factor beta (TGF-beta 1) suggest that there are three potential sites for N-linked glycosylation located in the amino terminus of the precursor region. Analysis of [3H]glucosamine-labeled serum-free supernatants from a line of Chinese hamster ovary cells which secrete high levels of recombinant TGF-beta 1 indicate that the TGF-beta 1 precursor, but not the mature form, is glycosylated. Digestion with neuraminidase resulted in a shift in migration of the two TGF-beta 1 precursor bands, which suggests that they contain sialic acid residues. Endoglycosidase H had no noticeable effect. Treatment with N-glycanase produced two faster-migrating sharp bands, the largest of which had a molecular weight of 39 kilodaltons. TGF-beta 1-specific transcripts produced by SP6 polymerase programmed the synthesis of a 42-kilodalton polypeptide which, we suggest, is the unmodified protein backbone of the precursor. Labeling with 32Pi showed that the TGF-beta 1 precursor was phosphorylated in the amino portion of the molecule.


Hepatology ◽  
2011 ◽  
Vol 54 (6) ◽  
pp. 2173-2184 ◽  
Author(s):  
Katia Bourd-Boittin ◽  
Dominique Bonnier ◽  
Anthony Leyme ◽  
Bernard Mari ◽  
Pierre Tuffery ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Katarzyna Zorena ◽  
Ewa Malinowska ◽  
Dorota Raczyńska ◽  
Małgorzata Myśliwiec ◽  
Krystyna Raczyńska

In the present study, we have decided to evaluate if serum transforming growth factor-beta 1 (TGF-β1) concentrations may have diagnostic value in predicting the occurrence of diabetic retinopathy (DR) in juvenile patients with type 1 diabetes mellitus (T1DM). The study included 81 children and adolescents with T1DM and 19 control subjects. All study participants had biochemical parameters examined, underwent an eye examination, and 24-hour blood pressure monitoring. Moreover, serum concentrations of TGF-β1 were measured. The group of patients with T1DM and nonproliferative diabetic retinopathy (NPDR) had statistically significant higher serum levels of TGF-β1 (P=0.001) as compared to T1DM patients without retinopathy as well as the healthy control subject. The threshold serum TGF-β1 concentrations which had a discriminative ability to predict the presence of DR were calculated using the receiver operating characteristic (ROC) curves analysis and amounted to 443 pg/ml. The area under the ROC curve (AUCROC) was 0.80, and its population value was in the range of 0.66 to 0.94. The sensitivity and specificity were calculated to be 72% and 88%, respectively. Our results suggest that TGF-β1 serum concentrations may be an additional parameter in predicting the occurrence of DR in juvenile patients with T1DM.


Blood ◽  
1991 ◽  
Vol 77 (5) ◽  
pp. 1013-1019 ◽  
Author(s):  
SR Slivka ◽  
DJ Loskutoff

Abstract A model system consisting of thrombin-stimulated bovine platelet releasates (PRthr) and bovine aortic endothelial cells (BAEs) was developed to determine if the interaction between platelets and endothelial cells regulates fibrinolysis. Zymographic analysis indicated that PRthr treatment of BAEs decreases urokinase and increases type 1 plasminogen activator inhibitor (PAI-1) activity. Although PRthr did not affect the overall rate of BAE protein synthesis, it increased PAI-1 biosynthesis within 6 hours. This increase was complete by 12 hours, with maximum stimulation at 10 to 15 micrograms/mL PRthr (1 microgram approximately 10(7) platelets). Neutralizing antibodies to transforming growth factor beta (TGF beta) reduced this effect by 75%. Treatments that activate latent TGF beta (eg, acidification or plasmin) increased this effect approximately fivefold, suggesting that TGF beta in PRthr exists in both a latent (approximately 80%) and an active (approximately 20%) form. In contrast to PRthr, adenosine diphosphate-prepared platelet releasates did not increase PAI-1 synthesis before acidification, indicating that they contain only the latent form of TGF beta. These results suggest that platelets can modulate the fibrinolytic system of the endothelium through the release of TGF beta, and that the mechanism by which the platelets are activated can influence the relative amount of active TGF beta.


1987 ◽  
Vol 7 (10) ◽  
pp. 3418-3427 ◽  
Author(s):  
L E Gentry ◽  
N R Webb ◽  
G J Lim ◽  
A M Brunner ◽  
J E Ranchalis ◽  
...  

Recombinant type 1 transforming growth factor beta (TGF-beta) was expressed to high levels in CHO cells by using dihydrofolate reductase (dhfr) gene amplification. The expression plasmid was derived from the pSV2 vectors and contained, in tandem, the simian TGF-beta and mouse dhfr cDNAs. Transcription of both cDNAs was controlled by the simian virus 40 early promoter. Stepwise selection of transfected CHO cells in increasing concentrations of methotrexate yielded cell lines that expressed amplified TGF-beta nucleic acid sequences. The expression plasmid DNA was amplified greater than 35-fold in one of the methotrexate-selected transfectants. The major proteins secreted by these cells consisted of latent TGF-beta and TGF-beta precursor polypeptides, as judged by immunoblots by using site-specific anti-peptide antibodies derived from various regions of the TGF-beta precursor. Levels of recombinant TGF-beta protein secreted by these cells approached 30 micrograms/24 h per 10(7) cells and required prior acidification for optimal activity; nonacidified supernatants were approximately 1% as active as acidified material. Antibodies directed toward sequences present in the mature growth factor readily identified a proteolytically processed recombinant TGF-beta which, on sodium dodecyl sulfate-polyacrylamide gels, comigrated with highly purified natural TGF-beta. In addition to mature recombinant TGF-beta, site-specific antibodies demonstrated the existence of larger TGF-beta precursor polypeptides. The availability of biologically active recombinant type 1 TGF-beta and precursor forms should provide a means to examine the structure, function, and potential in vivo therapeutic use of this growth factor.


Sign in / Sign up

Export Citation Format

Share Document