scholarly journals Examination of Adsorption Orientation of Amyloidogenic Peptides Over Nano-Gold Colloidal Particle Surfaces

2019 ◽  
Vol 20 (21) ◽  
pp. 5354 ◽  
Author(s):  
Kazushige Yokoyama ◽  
Kieran Brown ◽  
Peter Shevlin ◽  
Jack Jenkins ◽  
Elizabeth D’Ambrosio ◽  
...  

The adsorption of amyloidogenic peptides, amyloid beta 1–40 (Aβ1–40), alpha-synuclein (α-syn), and beta 2 microglobulin (β2m), was attempted over the surface of nano-gold colloidal particles, ranging from d = 10 to 100 nm in diameter (d). The spectroscopic inspection between pH 2 and pH 12 successfully extracted the critical pH point (pHo) at which the color change of the amyloidogenic peptide-coated nano-gold colloids occurred due to aggregation of the nano-gold colloids. The change in surface property caused by the degree of peptide coverage was hypothesized to reflect the ΔpHo, which is the difference in pHo between bare gold colloids and peptide coated gold colloids. The coverage ratio (Θ) for all amyloidogenic peptides over gold colloid of different sizes was extracted by assuming Θ = 0 at ΔpHo = 0. Remarkably, Θ was found to have a nano-gold colloidal size dependence, however, this nano-size dependence was not simply correlated with d. The geometric analysis and simulation of reproducing Θ was conducted by assuming a prolate shape of all amyloidogenic peptides. The simulation concluded that a spiking-out orientation of a prolate was required in order to reproduce the extracted Θ. The involvement of a secondary layer was suggested; this secondary layer was considered to be due to the networking of the peptides. An extracted average distance of networking between adjacent gold colloids supports the binding of peptides as if they are “entangled” and enclosed in an interfacial distance that was found to be approximately 2 nm. The complex nano-size dependence of Θ was explained by available spacing between adjacent prolates. When the secondary layer was formed, Aβ1–40 and α-syn possessed a higher affinity to a partially negative nano-gold colloidal surface. However, β2m peptides tend to interact with each other. This difference was explained by the difference in partial charge distribution over a monomer. Both Aβ1–40 and α-syn are considered to have a partial charge (especially δ+) distribution centering around the prolate axis. The β2m, however, possesses a distorted charge distribution. For a lower Θ (i.e., Θ <0.5), a prolate was assumed to conduct a gyration motion, maintaining the spiking-out orientation to fill in the unoccupied space with a tilting angle ranging between 5° and 58° depending on the nano-scale and peptide coated to the gold colloid.

Author(s):  
J. Fang ◽  
H. M. Chan ◽  
M. P. Harmer

It was Niihara et al. who first discovered that the fracture strength of Al2O3 can be increased by incorporating as little as 5 vol.% of nano-size SiC particles (>1000 MPa), and that the strength would be improved further by a simple annealing procedure (>1500 MPa). This discovery has stimulated intense interest on Al2O3/SiC nanocomposites. Recent indentation studies by Fang et al. have shown that residual stress relief was more difficult in the nanocomposite than in pure Al2O3. In the present work, TEM was employed to investigate the microscopic mechanism(s) for the difference in the residual stress recovery in these two materials.Bulk samples of hot-pressed single phase Al2O3, and Al2O3 containing 5 vol.% 0.15 μm SiC particles were simultaneously polished with 15 μm diamond compound. Each sample was cut into two pieces, one of which was subsequently annealed at 1300° for 2 hours in flowing argon. Disks of 3 mm in diameter were cut from bulk samples.


Radiocarbon ◽  
2001 ◽  
Vol 43 (2A) ◽  
pp. 271-273 ◽  
Author(s):  
E Sonninen ◽  
H Jungner

An error source in radiocarbon dating of ancient mortar is dead carbon of limestone mixed in the matrix. To eliminate the influence of limestone the difference in feasibility to react with acid between mortar and limestone is used. Since the rate of reaction depends on grain size use of a well-defined grain size can give a better separation between mortar and limestone. We present results for the grain size dependence of reaction rates for several mortar and limestone samples and discuss the application for dating.


2019 ◽  
Vol 6 (8) ◽  
pp. 085033
Author(s):  
Rajita Ramanarayanan ◽  
Bhabhina Ninnora Meethal ◽  
Nijisha Pullanjiyot ◽  
Niveditha C ◽  
Sindhu Swaminathan

1991 ◽  
Vol 05 (27) ◽  
pp. 1803-1807
Author(s):  
QIANG WANG ◽  
HAN RUSHAN ◽  
Z.Z. GAN

The Madelung energies of ionic crystal A(B′B″)O3 has been calculated for various B-site charge distributions, i.e., [Formula: see text], [Formula: see text] and [Formula: see text], and ordered superlattices, i.e., 1/2(111), 1/2(110) and 1/2(001). Calculation results show that the Madelung energy increases for a certain ordered structure as the difference in charge between B-site cations increases and demonstrate the experimental observations. Furthermore, the results point out that for a certain charge distribution the sequence of the structural stability is 1/2(001)<1/2(110)<1/2(111). This is in good agreement with experimental facts.


2020 ◽  
Vol 22 (33) ◽  
pp. 18272-18283 ◽  
Author(s):  
Puja Adhikari ◽  
Neng Li ◽  
Matthew Shin ◽  
Nicole F. Steinmetz ◽  
Reidun Twarock ◽  
...  

Five structural domains in chain A and partial charge distribution in RBD with same orientation as of chain A.


1999 ◽  
pp. 581-582 ◽  
Author(s):  
Paolo Galletto ◽  
Pierre F. Brevet ◽  
Hubert H. Girault ◽  
Rodolphe Antoine ◽  
Michel Broyer

1974 ◽  
Vol 64 (5) ◽  
pp. 551-567 ◽  
Author(s):  
Suzanne M. Pemrick ◽  
Charles Edwards

Glycerol-extracted rabbit psoas muscle fibers were impaled with KCl-filled glass microelectrodes. For fibers at rest-length, the potentials were significantly more negative in solutions producing relaxation than in solutions producing either rigor or contraction; further the potentials in the latter two cases were not significantly different. For stretched fibers, with no overlap between thick and thin filaments, the potentials did not differ in the rigor, the relaxation, or the contraction solutions. The potentials measured from fibers in rigor did not vary significantly with the sarcomere length. For relaxed fibers, however, the potential magnitude decreased with increasing sarcomere length. The difference between the potentials measured for rigor and relaxed fibers exhibited a nonlinear relationship with sarcomere length. The potentials from calcium-insensitive fibers were less negative in both the rigor and the relaxation solutions than those from normal fibers. When calcium-insensitive fibers had been incubated in Hasselbach and Schneider's solution plus MgCl2 or Guba-Straub's solution plus MgATP the potentials recorded upon impalement were similar in the rigor and the relaxation solution to those obtained from normal fibers in the relaxed state. It is concluded that the increase in the negative potential as the glycerinated fiber goes from rigor to relaxation may be due to an alteration in the conformation of the contractile proteins in the relaxed state.


Sign in / Sign up

Export Citation Format

Share Document