scholarly journals How Does Epstein–Barr Virus Contribute to Chronic Periodontitis?

2020 ◽  
Vol 21 (6) ◽  
pp. 1940 ◽  
Author(s):  
Kenichi Imai ◽  
Yorimasa Ogata

Chronic periodontitis is spreading worldwide and mutually interacts with systemic diseases like diabetes mellitus. Although periodontopathic bacteria are inevitable pathogens in their onset and progression, many cases are not ascribable to the virulence of these bacteria because the effect of plaque control is limited. In contrast, Epstein–Barr virus (EBV) in the periodontium has been correlated with chronic periodontitis and has recently been considered as a promising pathogenic candidate for this disease. However, several important questions have yet to be addressed. For instance, although EBV latently infects more than 90% of individuals over the world, why do patients with chronic periodontitis exclusively harbor progeny EBV in the oral cavity? In addition, how does latently infected or reactivated EBV in the periodontium relate to the onset or progression of chronic periodontitis? Finally, is periodontitis incurable because EBV is the pathogen for chronic periodontitis? In this review, we attempt to answer these questions by reporting the current understanding of molecular relations and mechanisms between periodontopathic bacteria and EBV reactivation in the context of how this relationship may pertain to the etiology of chronic periodontitis.

2001 ◽  
Vol 75 (13) ◽  
pp. 6235-6241 ◽  
Author(s):  
Barbara Wensing ◽  
Albert Stühler ◽  
Peter Jenkins ◽  
Martine Hollyoake ◽  
Claudio Elgueta Karstegl ◽  
...  

ABSTRACT Most of the Epstein-Barr virus genome in latently infected cells is in a standard nucleosomal structure, but the region encompassingoriP and the Epstein-Barr virus-encoded small RNA (EBER) genes shows a distinctive pattern when digested with micrococcal nuclease. This pattern corresponds to a previously mapped nuclear matrix attachment region. Although the EBER genes are adjacent to oriP, there is only a two- to fourfold effect oforiP on EBER expression. However, sequences containing a consensus ATF site upstream of EBER1 are important for EBER1 expression.


Cancers ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 237 ◽  
Author(s):  
Asuka Nanbo ◽  
Harutaka Katano ◽  
Michiyo Kataoka ◽  
Shiho Hoshina ◽  
Tsuyoshi Sekizuka ◽  
...  

Infection of Epstein–Barr virus (EBV), a ubiquitous human gamma herpesvirus, is associated with various malignancies in B lymphocytes and epithelial cells. EBV encodes 49 microRNAs in two separated regions, termed the BART and BHRF1 loci. Although accumulating evidence demonstrates that EBV infection regulates the profile of microRNAs in the cells, little is known about the microRNAs in exosomes released from infected cells. Here, we characterized the expression profile of intracellular and exosomal microRNAs in EBV-negative, and two related EBV-infected Burkitt lymphoma cell lines having type I and type III latency by next-generation sequencing. We found that the biogenesis of exosomes is upregulated in type III latently infected cells compared with EBV-negative and type I latently infected cells. We also observed that viral and several specific host microRNAs were predominantly incorporated in the exosomes released from the cells in type III latency. We confirmed that multiple viral microRNAs were transferred to the epithelial cells cocultured with EBV-infected B cells. Our findings indicate that EBV infection, in particular in type III latency, modulates the biogenesis of exosomes and the profile of exosomal microRNAs, potentially contributing to phenotypic changes in cells receiving these exosomes.


2020 ◽  
Vol 4 (8) ◽  
pp. 1624-1627
Author(s):  
Meir Shamay ◽  
Jennifer A. Kanakry ◽  
John S. W. Low ◽  
Netanel A. Horowitz ◽  
Guy Journo ◽  
...  

Abstract Epstein-Barr virus (EBV) is associated with a variety of tumors and nonmalignant conditions. Latent EBV genomes in cells, including tumor cells, are often CpG methylated, whereas virion DNA is not CpG methylated. We demonstrate that methyl CpG binding magnetic beads can be used to fractionate among sources of EBV DNA (DNA extracted from laboratory-purified virions vs DNA extracted from latently infected cell lines). We then applied the technique to plasma specimens and showed that this technique can distinguish EBV DNA from patients with EBV-associated tumors (nasopharyngeal carcinoma, Hodgkin lymphoma) and viral DNA from patients without EBV-associated tumors, including immunocompromised patients and patients with EBV(−) Hodgkin lymphoma.


2020 ◽  
Vol 94 (7) ◽  
Author(s):  
Tiffany R. Frey ◽  
Jozan Brathwaite ◽  
Xiaofan Li ◽  
Sandeepta Burgula ◽  
Ibukun A. Akinyemi ◽  
...  

ABSTRACT Lytic activation from latency is a key transition point in the life cycle of herpesviruses. Epstein-Barr virus (EBV) is a human herpesvirus that can cause lymphomas, epithelial cancers, and other diseases, most of which require the lytic cycle. While the lytic cycle of EBV can be triggered by chemicals and immunologic ligands, the lytic cascade is activated only when expression of the EBV latent-to-lytic switch protein ZEBRA is turned on. ZEBRA then transcriptionally activates other EBV genes and, together with some of those gene products, ensures completion of the lytic cycle. However, not every latently infected cell exposed to a lytic trigger turns on the expression of ZEBRA, resulting in responsive and refractory subpopulations. What governs this dichotomy? By examining the nascent transcriptome following exposure to a lytic trigger, we find that several cellular genes are transcriptionally upregulated temporally upstream of ZEBRA. These genes regulate lytic susceptibility to various degrees in latently infected cells that respond to mechanistically distinct lytic triggers. While increased expression of these cellular genes defines a prolytic state, such upregulation also runs counter to the well-known mechanism of viral-nuclease-mediated host shutoff that is activated downstream of ZEBRA. Furthermore, a subset of upregulated cellular genes is transcriptionally repressed temporally downstream of ZEBRA, indicating an additional mode of virus-mediated host shutoff through transcriptional repression. Thus, increased transcription of a set of host genes contributes to a prolytic state that allows a subpopulation of cells to support the EBV lytic cycle. IMPORTANCE Transition from latency to the lytic phase is necessary for herpesvirus-mediated pathology as well as viral spread and persistence in the population at large. Yet, viral genomes in only some cells in a population of latently infected cells respond to lytic triggers, resulting in subpopulations of responsive/lytic and refractory cells. Our investigations into this partially permissive phenotype of the herpesvirus Epstein-Barr virus (EBV) indicate that upon exposure to lytic triggers, certain cellular genes are transcriptionally upregulated, while viral latency genes are downregulated ahead of expression of the viral latent-to-lytic switch protein. These cellular genes contribute to lytic susceptibility to various degrees. Apart from indicating that there may be a cellular “prolytic” state, our findings indicate that (i) early transcriptional upregulation of cellular genes counters the well-known viral-nuclease-mediated host shutoff and (ii) subsequent transcriptional downregulation of a subset of early upregulated cellular genes is a previously undescribed mode of host shutoff.


2004 ◽  
Vol 78 (10) ◽  
pp. 4983-4992 ◽  
Author(s):  
Gregory K. Hong ◽  
Henri-Jacques Delecluse ◽  
Henri Gruffat ◽  
Thomas E. Morrison ◽  
Wen-Hai Feng ◽  
...  

ABSTRACT The switch from the latent to the lytic form of Epstein-Barr virus (EBV) infection is mediated by expression of the viral immediate-early (IE) proteins, BZLF1 (Z) and BRLF1 (R). An EBV early protein, BRRF1 (Na), is encoded by the opposite strand of the BRLF1 intron, but the function of this nuclear protein in the viral life cycle is unknown. Here we demonstrate that Na enhances the R-mediated induction of lytic EBV infection in 293 cells latently infected with a recombinant EBV (R-KO) defective for the expression of both R and Na. Na also enhances R-induced lytic infections in a gastric carcinoma line (AGS) carrying the R-KO virus, although it has no effect in a Burkitt lymphoma line (BL-30) stably infected with the same mutant virus. We show that Na is a transcription factor that increases the ability of R to activate Z expression from the R-KO viral genome in 293 cells and that Na by itself activates the Z promoter (Zp) in EBV-negative cells. Na activation of Zp requires a CRE motif (ZII), and a consensus CRE motif is sufficient to transfer Na responsiveness to the heterologous E1b promoter. Furthermore, we show that Na enhances the transactivator function of a Gal4-c-Jun fusion protein but does not increase the transactivator function of other transcription factors (including ATF-1, ATF-2, and CREB) known to bind CRE motifs. Na expression in cells results in increased levels of a hyperphosphorylated form of c-Jun, suggesting a mechanism by which Na activates c-Jun. Our results indicate that Na is a transcription factor that activates the EBV Zp IE promoter through its effects on c-Jun and suggest that Na cooperates with BRLF1 to induce the lytic form of EBV infection in certain cell types.


PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0222607 ◽  
Author(s):  
Jakub Dworzański ◽  
Bartłomiej Drop ◽  
Ewa Kliszczewska ◽  
Małgorzata Strycharz-Dudziak ◽  
Małgorzata Polz-Dacewicz

Sign in / Sign up

Export Citation Format

Share Document