scholarly journals Indonesian Ginger (Bangle) Extract Promotes Neurogenesis of Human Neural Stem Cells through WNT Pathway Activation

2020 ◽  
Vol 21 (13) ◽  
pp. 4772
Author(s):  
Kazumi Hirano ◽  
Miwa Kubo ◽  
Yoshiyasu Fukuyama ◽  
Masakazu Namihira

Indonesian ginger (Zingiber purpureum Rosc.), also known as Bangle, exhibits neurotrophic effects on cultured murine cortical neurons and in the adult mouse brain, but the underlying mechanisms remain unknown. Here, using human fetal neural stem cells (hfNSCs) as a model system for in vitro human neurogenesis, we show that Bangle extracts activate canonical WNT/β-catenin signaling. Bangle extract-treatment of hfNSCs not only promoted neuronal differentiation, but also accelerated neurite outgrowth from immature neurons. Furthermore, Bangle extracts induced expression of neurogenic genes and WNT signaling-target genes, and facilitated the accumulation of β-catenin in nuclei of hfNSC. Interestingly, altered histone modifications were also observed in Bangle-treated hfNSCs. Together, these findings demonstrate that Bangle contributes to hfNSC neurogenesis by WNT pathway and epigenetic regulation.

2021 ◽  
Vol 22 (8) ◽  
pp. 3913
Author(s):  
Satoshi Nakata ◽  
Ming Yuan ◽  
Jeffrey A. Rubens ◽  
Ulf D. Kahlert ◽  
Jarek Maciaczyk ◽  
...  

Central nervous system tumor with BCL6-corepressor internal tandem duplication (CNS-BCOR ITD) is a malignant entity characterized by recurrent alterations in exon 15 encoding the essential binding domain for the polycomb repressive complex (PRC). In contrast to deletion or truncating mutations seen in other tumors, BCOR expression is upregulated in CNS-BCOR ITD, and a distinct oncogenic mechanism has been suggested. However, the effects of this change on the biology of neuroepithelial cells is poorly understood. In this study, we introduced either wildtype BCOR or BCOR-ITD into human and murine neural stem cells and analyzed them with quantitative RT-PCR and RNA-sequencing, as well as growth, clonogenicity, and invasion assays. In human cells, BCOR-ITD promoted derepression of PRC2-target genes compared to wildtype BCOR. A similar effect was found in clinical specimens from previous studies. However, no growth advantage was seen in the human neural stem cells expressing BCOR-ITD, and long-term models could not be established. In the murine cells, both wildtype BCOR and BCOR-ITD overexpression affected cellular differentiation and histone methylation, but only BCOR-ITD increased cellular growth, invasion, and migration. BCOR-ITD overexpression drives transcriptional changes, possibly due to altered PRC function, and contributes to the oncogenic transformation of neural precursors.


2013 ◽  
Vol 2 (10) ◽  
pp. 731-744 ◽  
Author(s):  
Christopher J. Sontag ◽  
Hal X. Nguyen ◽  
Noriko Kamei ◽  
Nobuko Uchida ◽  
Aileen J. Anderson ◽  
...  

2016 ◽  
Vol 14 (2) ◽  
pp. 1316-1322 ◽  
Author(s):  
Pan Yang ◽  
Yun-Qian Guan ◽  
Ya-Li Li ◽  
Li Zhang ◽  
Lan Zhang ◽  
...  

2006 ◽  
Vol 198 (2) ◽  
pp. 593
Author(s):  
D.R. Wakeman ◽  
E.Y. Snyder ◽  
D.E. Redmond ◽  
J.F. Loring ◽  
F.J. Mueller

2022 ◽  
Vol 2022 ◽  
pp. 1-22
Author(s):  
Qingqi Meng ◽  
Zhiteng Chen ◽  
Qingyuan Gao ◽  
Liqiong Hu ◽  
Qilong Li ◽  
...  

Background. Neurodegenerative diseases, such as Alzheimer’s disease, and traumatic brain and spinal cord injury (SCI) are prevalent in clinical practice. Inhibition of hyperactive inflammation and proliferation of endogenous neural stem cells (NSCs) is a promising treatment strategy for SCI. Our previous studies demonstrated the beneficial effects of rosiglitazone (Rosi) on SCI, but its roles in inflammation inhibition and proliferation of NSCs are unknown. Methods. SCI in a rat model was established, and the effects of Rosi on motor functions were assessed. The effects of Rosi on NSC proliferation and the underlying mechanisms were explored in details. Results. We showed that Rosi ameliorated impairment of moto functions in SCI rats, inhibited inflammation, and promoted proliferation of NSCs in vivo. Rosi increased ATP production through enhancing glycolysis but not oxidative phosphorylation. Rosi reduced mitophagy by downregulating PTEN-induced putative kinase 1 (PINK1) transcription to promote NSC proliferation, which was effectively reversed by an overexpression of PINK1 in vitro. Through KEGG analysis and experimental validations, we discovered that Rosi reduced the expression of forkhead box protein O1 (FOXO1) which was a critical transcription factor of PINK1. Three FOXO1 consensus sequences (FCSs) were found in the first intron of the PINK1 gene, which could be potentially binding to FOXO1. The proximal FCS (chr 5: 156680169–156680185) from the translation start site exerted a more significant influence on PINK1 transcription than the other two FCSs. The overexpression of FOXO1 entirely relieved the inhibition of PINK1 transcription in the presence of Rosi. Conclusions. Besides inflammation inhibition, Rosi suppressed mitophagy by reducing FOXO1 to decrease the transcription of PINK1, which played a pivotal role in accelerating the NSC proliferation.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A802-A802
Author(s):  
Neerupma Silswal ◽  
Joe Bean ◽  
Herschel Gupta ◽  
Fatma Talib ◽  
Suban Burale ◽  
...  

Abstract Twelve percent of pregnant women receive glucocorticoids (sGCs) to reduce the risks to reduce morbidity and mortality associated with preterm birth in infants. The two most commonly administered sGC are Dexamethasone (Dex) and Betamethasone (Beta) and they serve to decrease the severity of respiratory distress, intraventricular hemorrhage and necrotizing enterocolitis. However, repeated administration of sGC has been shown to be associated with adverse neurological outcome and depends on the type of sGCs used, dose, timing of sGCs administration and sex. We have previously shown that prenatal exposure to Dex in a murine model lead to sex specific changes in the transcription response and in the biological function of neural stem cells and to long-term changes in brain architecture and behavior. Beta is the predominant sGC used prenatally in the United States, therefore these studies investigated the cellular and molecular responses to beta exposure on the neural stem cells in-vitro and anatomical organization of the brain in-vivo. Murine NSCs were isolated from the E14.5 cerebral cortex and exposed to 10-7 M Dex, 10-7 M Beta, or Vehicle for 4 or 24 hours and the immediate and long-term impact on transcription, proliferation and neuronal, glial and oligodendrocyte differentiation examined. Affymetrix genome transcriptional analyses reveal sex specific responses to Dex vs Beta in 4 hours. In females 682 genes were differentially regulated by Dex compared to 576 by Beta. In contrast, 875 were altered by Dex and 576 by Beta in males (Fold change > +/- 1.5, P< 0.05). Select target genes were independently validated by QPCR. Ingenuity Pathway Analysis was used to identify unique and overlapping pathways that were altered by Dex vs Beta. In males, Dex uniquely altered 34 pathways including, Thyroid Hormone Metabolism, ERK5 Signaling and Opioid Signaling while Bata altered 33 pathways including, Phagasome formation, IL-7 Signaling and JAK STAT signaling. In Females, Dex altered 45 pathways including Calcium Signaling, Serotonin Receptor Signaling and Xenobiotic Signaling, while Beta altered 46 pathways including, FXR/RXR Activation, Tec Kinase Signaling and D-myo-Inositol-5-Phosphate Metabolism. Another 35 pathways were altered by both Dex and Beta but they showed differences in genes activated or repressed. Dex and Beta, both significantly altered genes involved in proliferation and differentiation therefore the biological response of NSC to sGCs stimulation in vitro and the long term consequences of sGC exposure in-vivo was compared. Distinct differences in cell proliferation, glial and oligodendrocyte differentiation were observed. These results reveal gene targets, cellular pathways and processes that are differentially altered by prenatal Dex vs Beta exposure. Our finds may provide insights into the sex specific neurological outcomes observed in children exposed to sGCs in-utero.


Author(s):  
Marlen Alisch ◽  
Janis Kerkering ◽  
Tadhg Crowley ◽  
Kamil Rosiewicz ◽  
Friedemann Paul ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document