scholarly journals iPSC-Derived Liver Organoids: A Journey from Drug Screening, to Disease Modeling, Arriving to Regenerative Medicine

2020 ◽  
Vol 21 (17) ◽  
pp. 6215
Author(s):  
Cristina Olgasi ◽  
Alessia Cucci ◽  
Antonia Follenzi

Liver transplantation is the most common treatment for patients suffering from liver failure that is caused by congenital diseases, infectious agents, and environmental factors. Despite a high rate of patient survival following transplantation, organ availability remains the key limiting factor. As such, research has focused on the transplantation of different cell types that are capable of repopulating and restoring liver function. The best cellular mix capable of engrafting and proliferating over the long-term, as well as the optimal immunosuppression regimens, remain to be clearly well-defined. Hence, alternative strategies in the field of regenerative medicine have been explored. Since the discovery of induced pluripotent stem cells (iPSC) that have the potential of differentiating into a broad spectrum of cell types, many studies have reported the achievement of iPSCs differentiation into liver cells, such as hepatocytes, cholangiocytes, endothelial cells, and Kupffer cells. In parallel, an increasing interest in the study of self-assemble or matrix-guided three-dimensional (3D) organoids have paved the way for functional bioartificial livers. In this review, we will focus on the recent breakthroughs in the development of iPSCs-based liver organoids and the major drawbacks and challenges that need to be overcome for the development of future applications.

2019 ◽  
Author(s):  
Giovanni Sorrentino ◽  
Saba Rezakhani ◽  
Ece Yildiz ◽  
Sandro Nuciforo ◽  
Markus H. Heim ◽  
...  

AbstractThe recent demonstration that primary cells from the liver can be expanded in vitro as organoids holds enormous promise for regenerative medicine and disease modeling1–5. The use of three-dimensional (3D) cultures based on ill-defined and potentially immunogenic matrices, however, hampers the translation of liver organoid technology into real-life applications6. We here used chemically defined hydrogels for the efficient derivation of both mouse and human hepatic organoids. Organoid growth was found to be highly stiffness-sensitive and dependent on yes-associated protein 1 (YAP) activity. However, in contrast to intestinal organoids7, YAP-mediated stiffness sensitivity was independent of acto-myosin contractility, requiring instead activation of the Src family of kinases (SFKs). Aberrant matrix stiffness on the other hand led to a shift in the progenitor phenotype, resulting in compromised proliferative capacity. Finally, we demonstrate the unprecedented establishment of biopsy-derived human liver organoids without the use of animal components at any step of the process. Our approach thus opens up exciting perspectives for the establishment of protocols for liver organoid-based regenerative medicine.


Biology Open ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. bio055087
Author(s):  
Igor Gurevich ◽  
Sarah A. Burton ◽  
Christie Munn ◽  
Makiko Ohshima ◽  
Madelyn E. Goedland ◽  
...  

ABSTRACTNon-alcoholic fatty liver disease (NAFLD) affects 30–40% of adults and 10% of children in the US. About 20% of people with NAFLD develop non-alcoholic steatohepatitis (NASH), which may lead to cirrhosis and liver cancer, and is projected to be a leading cause of liver transplantation in the near future. Human induced pluripotent stem cells (iPSC) from NASH patients are useful for generating a large number of hepatocytes for NASH modeling applications and identification of potential drug targets. We developed a novel defined in vitro differentiation process to generate cryopreservable hepatocytes using an iPSC panel of NASH donors and apparently healthy normal (AHN) controls. iPSC-derived hepatocytes displayed stage specific phenotypic markers, hepatocyte morphology, with bile canaliculi. Importantly, both fresh and cryopreserved definitive endoderm and hepatoblasts successfully differentiated to pure and functional hepatocytes with increased CYP3A4 activity in response to rifampicin and lipid accumulation upon fatty acid (FA) treatment. End-stage hepatocytes integrated into three-dimensional (3D) liver organoids and demonstrated increased levels of albumin secretion compared to aggregates consisting of hepatocytes alone. End-stage hepatocytes derived from NASH donors demonstrated spontaneous lipidosis without FA supplementation, recapitulating a feature of NASH hepatocytes in vivo. Cryopreserved hepatocytes generated by this protocol across multiple donors will provide a critical cell source to facilitate the fundamental understanding of NAFLD/NASH biology and potential high throughput screening applications for preclinical evaluation of therapeutic targets.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Amitava Basu ◽  
Vijay K. Tiwari

AbstractEpigenetic mechanisms are known to define cell-type identity and function. Hence, reprogramming of one cell type into another essentially requires a rewiring of the underlying epigenome. Cellular reprogramming can convert somatic cells to induced pluripotent stem cells (iPSCs) that can be directed to differentiate to specific cell types. Trans-differentiation or direct reprogramming, on the other hand, involves the direct conversion of one cell type into another. In this review, we highlight how gene regulatory mechanisms identified to be critical for developmental processes were successfully used for cellular reprogramming of various cell types. We also discuss how the therapeutic use of the reprogrammed cells is beginning to revolutionize the field of regenerative medicine particularly in the repair and regeneration of damaged tissue and organs arising from pathological conditions or accidents. Lastly, we highlight some key challenges hindering the application of cellular reprogramming for therapeutic purposes.


2021 ◽  
Vol 22 (3) ◽  
pp. 1203
Author(s):  
Lu Qian ◽  
Julia TCW

A high-throughput drug screen identifies potentially promising therapeutics for clinical trials. However, limitations that persist in current disease modeling with limited physiological relevancy of human patients skew drug responses, hamper translation of clinical efficacy, and contribute to high clinical attritions. The emergence of induced pluripotent stem cell (iPSC) technology revolutionizes the paradigm of drug discovery. In particular, iPSC-based three-dimensional (3D) tissue engineering that appears as a promising vehicle of in vitro disease modeling provides more sophisticated tissue architectures and micro-environmental cues than a traditional two-dimensional (2D) culture. Here we discuss 3D based organoids/spheroids that construct the advanced modeling with evolved structural complexity, which propels drug discovery by exhibiting more human specific and diverse pathologies that are not perceived in 2D or animal models. We will then focus on various central nerve system (CNS) disease modeling using human iPSCs, leading to uncovering disease pathogenesis that guides the development of therapeutic strategies. Finally, we will address new opportunities of iPSC-assisted drug discovery with multi-disciplinary approaches from bioengineering to Omics technology. Despite technological challenges, iPSC-derived cytoarchitectures through interactions of diverse cell types mimic patients’ CNS and serve as a platform for therapeutic development and personalized precision medicine.


Author(s):  
Javed M ◽  
◽  
Khan A ◽  
Mukheed M ◽  
◽  
...  

Stem cells ae immature cells that have ability to differentiate into all specific and mature cells in body. The two main characteristics of stem cells are selfrenewable and ability to differentiate into all mature, functional and adult cells types. There are the two major classes a) pluripotent stem cells which have potential to differentiate in all adult cell and b) multipotent stem cells which have capacity to differentiate into many adult cells but not in all cell types. Due to the self-renewable ability stem cells are use in therapeutics, tissue regeneration, disease modeling and regenerative medicines and to treat cardiovascular diseases, neural disorders such as Parkinson’s disease and most importantly to treat carcinomas. The human induced pluripotent stem cells provide a great platform to study and treatment of human diseases because these are able to differentiate into many functional and specialized adult cells of body. The genome editing tools such as CRISPR Cas9 system and TALENs are used to generate multiple DNA variants in hPSCs by inducing site specific mutations, frame shift mutation and deletion. In present days CRISPR Cas9 is more efficient and frequent method for genome editing which is derived from bacterial cell.


Bioprinting ◽  
2021 ◽  
pp. 21-39
Author(s):  
Kenneth Douglas

Abstract: This chapter takes the reader on an imaginary scuba diving tour of the watery world of the cell and its surroundings, pointing out features such as the cytoskeleton (that forms the equivalent of the bones and muscles of our cells), the cell membrane (the outer skin of the cell), and the cell membrane’s embedded proteins that provide selective access to the interior of the cell—organelles (elfin versions our own organs). The chapter stresses the tumultuous action that occurs non-stop within the cells as proteins are assembled for use within and outside the cells. The chapter discusses stem cells, including the discovery of induced pluripotent stem cells. The chapter relates how cells differentiate to become dissimilar cell types, stresses the importance of three-dimensional study of cells (rather than two-dimensional study), and explains the different ways in which cells talk to each other.


2021 ◽  
Vol 13 (603) ◽  
pp. eabd1817
Author(s):  
Jacqueline M. Bliley ◽  
Mathilde C. S. C. Vermeer ◽  
Rebecca M. Duffy ◽  
Ivan Batalov ◽  
Duco Kramer ◽  
...  

The role that mechanical forces play in shaping the structure and function of the heart is critical to understanding heart formation and the etiology of disease but is challenging to study in patients. Engineered heart tissues (EHTs) incorporating human induced pluripotent stem cell (hiPSC)–derived cardiomyocytes have the potential to provide insight into these adaptive and maladaptive changes. However, most EHT systems cannot model both preload (stretch during chamber filling) and afterload (pressure the heart must work against to eject blood). Here, we have developed a new dynamic EHT (dyn-EHT) model that enables us to tune preload and have unconstrained contractile shortening of >10%. To do this, three-dimensional (3D) EHTs were integrated with an elastic polydimethylsiloxane strip providing mechanical preload and afterload in addition to enabling contractile force measurements based on strip bending. Our results demonstrated that dynamic loading improves the function of wild-type EHTs on the basis of the magnitude of the applied force, leading to improved alignment, conduction velocity, and contractility. For disease modeling, we used hiPSC-derived cardiomyocytes from a patient with arrhythmogenic cardiomyopathy due to mutations in the desmoplakin gene. We demonstrated that manifestation of this desmosome-linked disease state required dyn-EHT conditioning and that it could not be induced using 2D or standard 3D EHT approaches. Thus, a dynamic loading strategy is necessary to provoke the disease phenotype of diastolic lengthening, reduction of desmosome counts, and reduced contractility, which are related to primary end points of clinical disease, such as chamber thinning and reduced cardiac output.


Author(s):  
Andre M. C. Meneses ◽  
Kerstin Schneeberger ◽  
Hedwig S. Kruitwagen ◽  
Louis C. Penning ◽  
Frank G. van Steenbeek ◽  
...  

Recent technical advances in the stem cell field have enabled the in vitro generation of complex structures resembling whole organs termed organoids. Most of these approaches employ culture systems that allow stem cell-derived or tissue progenitor cells to self-organize into three-dimensional (3D)-structures. Since organoids can be grown from various species, organs and from patient-derived induced pluripotent stem cells, they create significant prospects for modelling development and diseases, for toxicology and drug discovery studies, and in the field of regenerative medicine. Here, we report on intestinal stem cells, organoid culture, organoid disease modeling, transplantation, current and future uses of this exciting new insight model to veterinary medicine field.


2020 ◽  
Vol 21 (23) ◽  
pp. 8910 ◽  
Author(s):  
Romana Zahumenska ◽  
Vladimir Nosal ◽  
Marek Smolar ◽  
Terezia Okajcekova ◽  
Henrieta Skovierova ◽  
...  

One of the greatest breakthroughs of regenerative medicine in this century was the discovery of induced pluripotent stem cell (iPSC) technology in 2006 by Shinya Yamanaka. iPSCs originate from terminally differentiated somatic cells that have newly acquired the developmental capacity of self-renewal and differentiation into any cells of three germ layers. Before iPSCs can be used routinely in clinical practice, their efficacy and safety need to be rigorously tested; however, iPSCs have already become effective and fully-fledged tools for application under in vitro conditions. They are currently routinely used for disease modeling, preparation of difficult-to-access cell lines, monitoring of cellular mechanisms in micro- or macroscopic scales, drug testing and screening, genetic engineering, and many other applications. This review is a brief summary of the reprogramming process and subsequent differentiation and culture of reprogrammed cells into neural precursor cells (NPCs) in two-dimensional (2D) and three-dimensional (3D) conditions. NPCs can be used as biomedical models for neurodegenerative diseases (NDs), which are currently considered to be one of the major health problems in the human population.


Sign in / Sign up

Export Citation Format

Share Document