scholarly journals Total Blood Exosomes in Breast Cancer: Potential Role in Crucial Steps of Tumorigenesis

2020 ◽  
Vol 21 (19) ◽  
pp. 7341
Author(s):  
Maria Konoshenko ◽  
Georgy Sagaradze ◽  
Evgeniya Orlova ◽  
Tatiana Shtam ◽  
Ksenia Proskura ◽  
...  

Exosomes are crucial players in cell-to-cell communication and are involved in tumorigenesis. There are two fractions of blood circulating exosomes: free and cell-surface-associated. Here, we compared the effect of total blood exosomes (contain plasma exosomes and blood cell-surface-associated exosomes) and plasma exosomes from breast cancer patients (BCPs, n = 43) and healthy females (HFs, n = 35) on crucial steps of tumor progression. Exosomes were isolated by ultrafiltration, followed by ultracentrifugation, and characterized by cryo-electron microscopy (cryo-EM), nanoparticle tracking analysis, and flow cytometry. Cryo-EM revealed a wider spectrum of exosome morphology with lipid bilayers and vesicular internal structures in the HF total blood in comparison with plasma. No differences in the morphology of both exosomes fractions were detected in BCP blood. The plasma exosomes and total blood exosomes of BCPs had different expression levels of tumor-associated miR-92a and miR-25-3p, induced angiogenesis and epithelial-to-mesenchymal transition (EMT), and increased the number of migrating pseudo-normal breast cells and the total migration path length of cancer cells. The multidirectional effects of HF total blood exosomes on tumor dissemination were revealed; they suppress the angiogenesis and total migration path length of MCF10A, but stimulate EMT and increase the number of migrating MCF10A and the total path length of SKBR3 cells. In addition, HF plasma exosomes enhance the metastasis-promoting properties of SKBR3 cells and stimulate angiogenesis. Both cell-free and blood cell-surface-associated exosomes are involved in the crucial stages of carcinogenesis: the initiation of EMT and the stimulation of proliferation, cell migration, and angiogenesis. Thus, for the estimation of the diagnostic/prognostic significance of circulating exosomes in the blood of cancer patients more correctly, the total blood exosomes, which consist of plasma exosomes and blood cell-surface-associated exosomes should be used.

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e23022-e23022
Author(s):  
Michal Mego ◽  
Matus Hajduk ◽  
Marian Karaba ◽  
Gabriel Minarik ◽  
Juraj Benca ◽  
...  

e23022 Background: CTCs play major role in tumor dissemination and progression and represent one of the key component of metastatic cascade. MicroRNAs (miRs) are involved in regulation in several biological processes in cancer including invasion, epithelial-mesenchymal transition (EMT) and disease progression. The aim of this study was to identify miRs in primary tumor associated with presence of CTCs in peripheral blood (PB) in non-metastatic breast cancer patients. Methods: This translational study included 79 patients with primary breast cancer for whom fresh frozen tumor tissue and status of CTCs in peripheral blood were available. CTCs were detected before surgery by qRT-PCR assay for expression of epithelial (CK19) or epithelial-mesenchymal transition (EMT) genes (TWIST1, SNAIL1, SLUG, ZEB1). Total RNA was extracted from fresh frozen primary tumor and the expression profiles were obtained using Human microRNA Microarray v21.0 (Agilent Technologies). Results: We analyzed 48 (60.8%) tumor samples from patients with presence of CTCs in PB and 31 (39.2%) tumors with non-detectable CTCs. From CTCs positive patients, in 20 (41.7%) of them epithelial CTCs (EP_CTC) were detected while in 28 (38.3%) CTCs with EMT (CTC_EMT) phenotype were present. We identified 178 miRs that were expressed at significantly different levels (FDR < 0.05) in tumors with presence of any type of CTCs in PB compared to tumors with non-detectable CTCs. We also identified 174 and 137 miRs (33 overlapping) that were expressed at significantly different levels in tumors with EP_CTCs and CTC_EMT, respectively, compared to tumors with non-detectable CTCs. Overlapping miRs with highest different levels in expression (FDR < 0.01) were miR-3137, miR-3138, miR-3168, miR-605-5p, miR-6165 and miR-6790-5p. Conclusions: We identified for the first time miRs expressed in primary tumor associated with CTCs in peripheral blood in breast cancer patients. Moreover, we identified miRs specifically associated with various subpopulations of CTCs. We suppose, that these miRs could be involved in tumor dissemination and might lead to identification of new therapeutic targets. Study was supported by APVV-14-0327.


2019 ◽  
Vol 19 (4) ◽  
pp. 273-285 ◽  
Author(s):  
Svetlana Tamkovich ◽  
Oleg Tutanov ◽  
Anastasia Efimenko ◽  
Alina Grigor'eva ◽  
Elena Ryabchikova ◽  
...  

Background: Considering exosomes as intercellular transporters, inevitably interacting with the plasma membrane and the large available surface of blood cells, we wonder if a fraction of circulating exosomes is associated with the surface of blood cells. Objective: The aim of this study was to develop an efficient protocol for isolating exosomes associated with the surface of blood cells and to further investigate the characteristics of this fraction in a healthy state and during the development of breast cancer, as well as its possible implication for use in diagnostic applications. Methods: Blood samples were collected from Healthy Females (HFs) and breast cancer patients (BCPs). Exosomes extracted from blood plasma and eluted from the surface of blood cells were isolated by ultrafiltration with subsequent ultracentrifugation. Results: Transmission Electron Microscopy (TEM), along with immunogold labeling, demonstrated the presence of exosomes among membrane-wrapped extracellular vesicles (EVs) isolated from both plasma and blood cell eluates. TEM, nanoparticle tracking analysis, and NanoOrange protein quantitation data showed that cell-associated exosomes constituted no less than 2/3 of total blood exosome number. Exosomes, ranging from 50–70 nm in size, prevailed in the blood of breast cancer patients, whereas smaller exosomes (30–50 nm) were mostly observed in the blood of healthy women. Analysis of specific proteins and RNAs in exosomes circulating in blood demonstrated the significant differences in the packing density of the polymers in exosomes of HFs and BCPs. Preliminary data indicated that detection of cancer-specific miRNA (miR-103, miR-191, miR-195) in exosomes associated with the fraction of red blood cells allowed to discriminate HFs and BCPs more precisely compared to cell-free exosomes circulating in plasma. Conclusion: Our data provide the basis for using blood cell-associated exosomes for diagnostic applications.


2021 ◽  
pp. 153537022110493
Author(s):  
Yan Zheng ◽  
Lin Wang ◽  
Xiu Han ◽  
Lin Shen ◽  
Chen Ling ◽  
...  

Plasma cell mastitis is a benign suppurative disease of the breast, lack of specific clinical manifestations, which is easy to be misdiagnosed and mistreated, often confused with mastitis, breast cancer (BC), and other diseases. Thus, we aimed to establish a combined model of promoting diagnostic accuracy of plasma cell mastitis by contrast-enhanced ultrasound (CEUS) patterns and routine blood cell analysis. Eighty-eight plasma cell mastitis, 91 breast cancer, and 152 other benign breast diseases’ patients grouped according to pathological diagnosis underwent CEUS and blood cell analysis examination; 100 healthy female donors were involved. All the plasma cell mastitis and breast cancer patients presented hyperenhancement of CEUS breast lesions compared with others. The majority of plasma cell mastitis (65/88) showed perfusion defect of CEUS patterns with smooth edge (56/65) and multiple lesions (49/65); in contrast, fewer breast cancer patients (30/91) displayed perfusion defect. White blood cell count (WBC), neutrophils, and neutrophils/lymphocytes ratio of blood cell analysis in plasma cell mastitis patients increased significantly compared with other patients ( P < 0.0001). Combining perfusion defect of CEUS patterns and WBC yielded an area under the receiver operating characteristic curve of 0.831, higher than single 0.720 and 0.774, respectively. The cut-off value of WBC (7.28 × 109/L) helped remaining 65.2% (15/23) atypical cases to be correctly diagnosed as plasma cell mastitis, not misdiagnosed as breast cancer. In conclusion, CEUS presented a clear perfusion defect pattern of plasma cell mastitis lesion for the first time. A precise WBC by routine blood cell analysis test can assist CEUS examination in the differential diagnosis of plasma cell mastitis and breast cancer. It is a promised combination for laboratory diagnostic of PCM.


Metabolites ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 469
Author(s):  
Javier Amézaga ◽  
Gurutze Ugartemendia ◽  
Aitziber Larraioz ◽  
Nerea Bretaña ◽  
Aizpea Iruretagoyena ◽  
...  

Red blood cell (RBC) membrane can reflect fatty acid (FA) contribution from diet and biosynthesis. In cancer, membrane FAs are involved in tumorigenesis and invasiveness, and are indicated as biomarkers to monitor the disease evolution as well as potential targets for therapies and nutritional strategies. The present study provides RBC membrane FA profiles in recently diagnosed breast cancer patients before starting chemotherapy treatment. Patients and controls were recruited, and their dietary habits were collected. FA lipidomic analysis of mature erythrocyte membrane phospholipids in blood samples was performed. Data were adjusted to correct for the effects of diet, body mass index (BMI), and age, revealing that patients showed lower levels of saturated fatty acids (SFA) and higher levels of monounsaturated fatty acid, cis-vaccenic (25%) than controls, with consequent differences in desaturase enzymatic index (∆9 desaturase, –13.1%). In the case of polyunsaturated fatty acids (PUFA), patients had higher values of ω-6 FA (C18:2 (+11.1%); C20:4 (+7.4%)). RBC membrane lipidomic analysis in breast cancer revealed that ω-6 pathways are favored. These results suggest new potential targets for treatments and better nutritional guidelines.


2020 ◽  
Vol 9 (2) ◽  
pp. 353 ◽  
Author(s):  
Manuel Abreu ◽  
Pablo Cabezas-Sainz ◽  
Thais Pereira-Veiga ◽  
Catalina Falo ◽  
Alicia Abalo ◽  
...  

Traditionally, studies to address the characterization of mechanisms promoting tumor aggressiveness and progression have been focused only on primary tumor analyses, which could provide relevant information but have limitations to really characterize the more aggressive tumor population. To overcome these limitations, circulating tumor cells (CTCs) represent a noninvasive and valuable tool for real-time profiling of disseminated tumor cells. Therefore, the aim of the present study was to explore the value of CTC enumeration and characterization to identify markers associated with the outcome and the aggressiveness of triple-negative breast cancer (TNBC). For that aim, the CTC population from 32 patients diagnosed with TNBC was isolated and characterized. This population showed important cell plasticity in terms of expression of epithelia/mesenchymal and stemness markers, suggesting the relevance of epithelial to mesenchymal transition (EMT) intermediate phenotypes for efficient tumor dissemination. Importantly, the CTC signature demonstrated prognostic value to predict the patients’ outcome and pointed to a relevant role of tissue inhibitor of metalloproteinases 1 (TIMP1) and androgen receptor (AR) for TNBC biology. Furthermore, we also analyzed the usefulness of the AR and TIMP1 blockade to target TNBC proliferation and dissemination using in vitro and in vivo zebra fish and mouse models. Overall, the molecular characterization of CTCs from advanced TNBC patients identifies highly specific biomarkers with potential applicability as noninvasive prognostic markers and reinforced the value of TIMP1 and AR as potential therapeutic targets to tackle the most aggressive breast cancer.


2020 ◽  
Vol 21 (18) ◽  
pp. 6708 ◽  
Author(s):  
Masanori Oshi ◽  
Stephanie Newman ◽  
Yoshihisa Tokumaru ◽  
Li Yan ◽  
Ryusei Matsuyama ◽  
...  

Angiogenesis is one of the hallmarks of cancer. We hypothesized that intra-tumoral angiogenesis correlates with inflammation and metastasis in breast cancer patients. To test this hypothesis, we generated an angiogenesis pathway score using gene set variation analysis and analyzed the tumor transcriptome of 3999 breast cancer patients from The Cancer Genome Atlas Breast Cancer (TCGA-BRCA), Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), GSE20194, GSE25066, GSE32646, and GSE2034 cohorts. We found that the score correlated with expression of various angiogenesis-, vascular stability-, and sphingosine-1-phosphate (S1P)-related genes. Surprisingly, the angiogenesis score was not associated with breast cancer subtype, Nottingham pathological grade, clinical stage, response to neoadjuvant chemotherapy, or patient survival. However, a high score was associated with a low fraction of both favorable and unfavorable immune cell infiltrations except for dendritic cell and M2 macrophage, and with Leukocyte Fraction, Tumor Infiltrating Lymphocyte Regional Fraction and Lymphocyte Infiltration Signature scores. High-score tumors had significant enrichment for unfavorable inflammation-related gene sets (interleukin (IL)6, and tumor necrosis factor (TNF)α- and TGFβ-signaling), as well as metastasis-related gene sets (epithelial mesenchymal transition, and Hedgehog-, Notch-, and WNT-signaling). High score was significantly associated with metastatic recurrence particularly to brain and bone. In conclusion, using the angiogenesis pathway score, we found that intra-tumoral angiogenesis is associated with immune reaction, inflammation and metastasis-related pathways, and metastatic recurrence in breast cancer.


Sign in / Sign up

Export Citation Format

Share Document