scholarly journals Processed Eggshell Membrane Powder Is a Promising Biomaterial for Use in Tissue Engineering

2020 ◽  
Vol 21 (21) ◽  
pp. 8130
Author(s):  
Sissel B. Rønning ◽  
Ragnhild S. Berg ◽  
Vibeke Høst ◽  
Eva Veiseth-Kent ◽  
Christian R. Wilhelmsen ◽  
...  

The purpose of this study was to investigate the tissue regenerating and biomechanical properties of processed eggshell membrane powder (PEP) for use in 3D-scaffolds. PEP is a low-cost, natural biomaterial with beneficial bioactive properties. Most importantly, this material is available as a by-product of the chicken egg processing (breaking) industry on a large scale, and it could have potential as a low-cost ingredient for therapeutic scaffolds. Scaffolds consisting of collagen alone and collagen combined with PEP were produced and analyzed for their mechanical properties and the growth of primary fibroblasts and skeletal muscle cells. Mechanical testing revealed that a PEP/collagen-based scaffold increased the mechanical hardness of the scaffold compared with a pure collagen scaffold. Scanning electron microscopy (SEM) demonstrated an interconnected porous structure for both scaffolds, and that the PEP was evenly distributed in dense clusters within the scaffold. Fibroblast and skeletal muscle cells attached, were viable and able to proliferate for 1 and 2 weeks in both scaffolds. The cell types retained their phenotypic properties expressing phenotype markers of fibroblasts (TE7, alpha-smooth muscle actin) and skeletal muscle (CD56) visualized by immunostaining. mRNA expression of the skeletal muscle markers myoD, myogenin, and fibroblasts marker (SMA) together with extracellular matrix components supported viable phenotypes and matrix-producing cells in both types of scaffolds. In conclusion, PEP is a promising low-cost, natural biomaterial for use in combination with collagen as a scaffold for 3D-tissue engineering to improve the mechanical properties and promote cellular adhesion and growth of regenerating cells.

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Takara Tanaka ◽  
Noriko Hattori-Aramaki ◽  
Ayano Sunohara ◽  
Keisuke Okabe ◽  
Yoshiaki Sakamoto ◽  
...  

For in vitro tissue engineering of skeletal muscle, alignment and fusion of the cultured skeletal muscle cells are required. Although the successful alignment of skeletal muscle cells cultured in collagen gel has been reported using a mechanical force, other means of aligning cultured skeletal muscle cells have not been described. However, skeletal muscle cells cultured in a two-dimensional dish have been reported to align in a uniform direction when electrically stimulated. The purpose of this study is to determine if skeletal muscle cells cultured three-dimensionally in collagen gels can be aligned by an electrical load. By adding direct current to cells of the C2C12 skeletal muscle cell line cultured in collagen gel, it was possible to align C2C12 cells in a similar direction. However, the ratio of alignment was better when mechanical force was used as the means of alignment. Thus for tissue engineering of skeletal muscle cells, electrical stimulation may be useful as a supplementary method.


2002 ◽  
Vol 283 (4) ◽  
pp. C1219-C1227 ◽  
Author(s):  
Amy M. Collinsworth ◽  
Sarah Zhang ◽  
William E. Kraus ◽  
George A. Truskey

The effect of differentiation on the transverse mechanical properties of mammalian myocytes was determined by using atomic force microscopy. The apparent elastic modulus increased from 11.5 ± 1.3 kPa for undifferentiated myoblasts to 45.3 ± 4.0 kPa after 8 days of differentiation ( P< 0.05). The relative contribution of viscosity, as determined from the normalized hysteresis area, ranged from 0.13 ± 0.02 to 0.21 ± 0.03 and did not change throughout differentiation. Myosin expression correlated with the apparent elastic modulus, but neither myosin nor β-tubulin were associated with hysteresis. Microtubules did not affect mechanical properties because treatment with colchicine did not alter the apparent elastic modulus or hysteresis. Treatment with cytochalasin D or 2,3-butanedione 2-monoxime led to a significant reduction in the apparent elastic modulus but no change in hysteresis. In summary, skeletal muscle cells exhibited viscoelastic behavior that changed during differentiation, yielding an increase in the transverse elastic modulus. Major contributors to changes in the transverse elastic modulus during differentiation were actin and myosin.


2007 ◽  
Vol 177 (4S) ◽  
pp. 488-488
Author(s):  
Thomas Otto ◽  
Klaus Bornemeyer ◽  
Christoph Eimer ◽  
Holger Gerullis ◽  
Jens W. Bagner ◽  
...  

2004 ◽  
Vol 287 (2) ◽  
pp. C292-C299 ◽  
Author(s):  
Jingying Sarah Zhang ◽  
William E. Kraus ◽  
George A. Truskey

In this study, we examined the hypothesis that stretch-induced (nitric oxide) NO modulates the mechanical properties of skeletal muscles by increasing accumulation of protein levels of talin and vinculin and by inhibiting calpain-induced proteolysis, thereby stabilizing the focal contacts and the cytoskeleton. Differentiating C2C12 myotubes were subjected to a single 10% step stretch for 0–4 days. The apparent elastic modulus of the cells, Eapp, was subsequently determined by atomic force microscopy. Static stretch led to significant increases ( P < 0.01) in Eapp beginning at 2 days. These increases were correlated with increases in NO activity and neuronal NO synthase (nNOS) protein expression. Expression of talin was upregulated throughout, whereas expression of vinculin was significantly increased only on days 3 and 4. Addition of the NO donor l-arginine onto stretched cells further enhanced Eapp, NOS activity, and nNOS expression, whereas the presence of the NO inhibitor Nω-nitro-l-arginine methyl ester (l-NAME) reversed the effects of mechanical stimulation and of l-arginine. Overall, viscous dissipation, as determined by the value of hysteresis, was not significantly altered. For assessment of the role of vinculin and talin stability, cells treated with l-NAME showed a significant decrease in Eapp, whereas addition of a calpain inhibitor abolished the effect. Thus our results show that NO inhibition of calpain-initiated cleavage of cytoskeleton proteins was correlated with the changes in Eapp. Together, our data suggest that NO modulates the mechanical behavior of skeletal muscle cells through the combined action of increased talin and vinculin levels and a decrease in calpain-mediated talin proteolysis.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
II Ezeigbo ◽  
C Wheeler-Jones ◽  
S Gibbons ◽  
ME Cleasby

2018 ◽  
Author(s):  
S Höckele ◽  
P Huypens ◽  
C Hoffmann ◽  
T Jeske ◽  
M Hastreiter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document