scholarly journals Delicate Role of PD-L1/PD-1 Axis in Blood Vessel Inflammatory Diseases: Current Insight and Future Significance

2020 ◽  
Vol 21 (21) ◽  
pp. 8159
Author(s):  
Priya Veluswamy ◽  
Max Wacker ◽  
Maximilian Scherner ◽  
Jens Wippermann

Immune checkpoint molecules are the antigen-independent generator of secondary signals that aid in maintaining the homeostasis of the immune system. The programmed death ligand-1 (PD-L1)/PD-1 axis is one among the most extensively studied immune-inhibitory checkpoint molecules, which delivers a negative signal for T cell activation by binding to the PD-1 receptor. The general attributes of PD-L1’s immune-suppressive qualities and novel mechanisms on the barrier functions of vascular endothelium to regulate blood vessel-related inflammatory diseases are concisely reviewed. Though targeting the PD-1/PD-L1 axis has received immense recognition—the Nobel Prize in clinical oncology was awarded in the year 2018 for this discovery—the use of therapeutic modulating strategies for the PD-L1/PD-1 pathway in chronic inflammatory blood vessel diseases is still limited to experimental models. However, studies using clinical specimens that support the role of PD-1 and PD-L1 in patients with underlying atherosclerosis are also detailed. Of note, delicate balances in the expression levels of PD-L1 that are needed to preserve T cell immunity and to curtail acute as well as chronic infections in underlying blood vessel diseases are discussed. A significant link exists between altered lipid and glucose metabolism in different cells and the expression of PD-1/PD-L1 molecules, and its possible implications on vascular inflammation are justified. This review summarizes the most recent insights concerning the role of the PD-L1/PD-1 axis in vascular inflammation and, in addition, provides an overview exploring the novel therapeutic approaches and challenges of manipulating these immune checkpoint proteins, PD-1 and PD-L1, for suppressing blood vessel inflammation.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Christopher B. Toomey ◽  
David M. Cauvi ◽  
Kenneth M. Pollard

Decay accelerating factor (DAF) plays a complex role in the immune system through complement-dependent and -independent regulation of innate and adaptive immunity. Over the past five years there has been accumulating evidence for a significant role of DAF in negatively regulating adaptive T-cell responses and autoimmunity in both humans and experimental models. This review discusses the relationship between DAF and the complement system and highlights major advances in our understanding of the biology of DAF in human disease, particularly systemic lupus erythematosus. The role of DAF in regulation of idiopathic and environmentally induced systemic autoimmunity is discussed including studies showing that reduction or absence of DAF is associated with autoimmunity. In contrast, DAF-mediated T cell activation leads to cytokine expression consistent with T regulatory cells. This is supported by studies showing that interaction between DAF and its molecular partner, CD97, modifies expression of autoimmunity promoting cytokines. These observations are used to develop a hypothetical model to explain how DAF expression may impact T cell differentiation via interaction with CD97 leading to T regulatory cells, increased production of IL-10, and immune tolerance.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 834
Author(s):  
Frederike A. Hartl ◽  
Jatuporn Ngoenkam ◽  
Esmeralda Beck-Garcia ◽  
Liz Cerqueira ◽  
Piyamaporn Wipa ◽  
...  

The T cell antigen receptor (TCR) is expressed on T cells, which orchestrate adaptive immune responses. It is composed of the ligand-binding clonotypic TCRαβ heterodimer and the non-covalently bound invariant signal-transducing CD3 complex. Among the CD3 subunits, the CD3ε cytoplasmic tail contains binding motifs for the Src family kinase, Lck, and the adaptor protein, Nck. Lck binds to a receptor kinase (RK) motif and Nck binds to a proline-rich sequence (PRS). Both motifs only become accessible upon ligand binding to the TCR and facilitate the recruitment of Lck and Nck independently of phosphorylation of the TCR. Mutations in each of these motifs cause defects in TCR signaling and T cell activation. Here, we investigated the role of Nck in proximal TCR signaling by silencing both Nck isoforms, Nck1 and Nck2. In the absence of Nck, TCR phosphorylation, ZAP70 recruitment, and ZAP70 phosphorylation was impaired. Mechanistically, this is explained by loss of Lck recruitment to the stimulated TCR in cells lacking Nck. Hence, our data uncover a previously unknown cooperative interaction between Lck and Nck to promote optimal TCR signaling.


1992 ◽  
Vol 13 (12) ◽  
pp. 477-481 ◽  
Author(s):  
Denis Alexander ◽  
Masahiro Shiroo ◽  
Anne Robinson ◽  
Mark Biffen ◽  
Emer Shivnan

1984 ◽  
pp. 17-22
Author(s):  
P. Erb ◽  
G. Ramila ◽  
A. Stern ◽  
I. Sklenar

Sign in / Sign up

Export Citation Format

Share Document