scholarly journals The Specific Effects of OD-1, a Peptide Activator, on Voltage-Gated Sodium Current and Seizure Susceptibility

2020 ◽  
Vol 21 (21) ◽  
pp. 8254
Author(s):  
Ming-Chi Lai ◽  
Sheng-Nan Wu ◽  
Chin-Wei Huang

OD-1, a scorpion toxin, has been previously recognized as an activator of voltage-gated Na+ currents. To what extent this agent can alter hippocampal neuronal Na+ currents and network excitability and how it can be applied to neuronal hyperexcitability research remains unclear. With the aid of patch-clamp technology, it was revealed that, in mHippoE-14 hippocampal neurons, OD-1 produced a concentration-, time-, and state-dependent rise in the peak amplitude of INa. It shifted the INa inactivation curve to a less negative potential and increased the frequency of spontaneous action currents. Further characterization of neuronal excitability revealed higher excitability in the hippocampal slices treated with OD-1 as compared with the control slices. A stereotaxic intrahippocampal injection of OD-1 generated a significantly higher frequency of spontaneous seizures and epileptiform discharges compared with intraperitoneal injection of lithium-pilocarpine- or kainic acid-induced epilepsy, with comparable pathological changes. Carbamazepine significantly attenuated OD-1 induced seizures and epileptiform discharges. The OD-1-mediated modifications of INa altered the electrical activity of neurons in vivo and OD-1 could potentially serve as a novel seizure and excitotoxicity model.

2009 ◽  
Vol 23 (9) ◽  
pp. 1494-1504 ◽  
Author(s):  
Vanessa Niederkinkhaus ◽  
Romy Marx ◽  
Gerd Hoffmann ◽  
Irmgard D. Dietzel

Abstract We have previously shown that treatment with the thyroid hormone T3 increases the voltage-gated Na+current density (Nav-D) in hippocampal neurons from postnatal rats, leading to accelerated action potential upstrokes and increased firing frequencies. Here we show that the Na+ current regulation depends on the presence of glial cells, which secrete a heat-instable soluble factor upon stimulation with T3. The effect of conditioned medium from T3-treated glial cells was mimicked by basic fibroblast growth factor (bFGF), known to be released from cerebellar glial cells after T3 treatment. Neutralization assays of astrocyte-conditioned media with anti-bFGF antibody inhibited the regulation of the Nav-D by T3. This suggests that the up-regulation of the neuronal sodium current density by T3 is not a direct effect but involves bFGF release and satellite cells. Thus glial cells can modulate neuronal excitability via secretion of paracrinely acting factors.


2007 ◽  
Vol 98 (6) ◽  
pp. 3666-3676 ◽  
Author(s):  
Hai Xia Zhang ◽  
Liu Lin Thio

Although extracellular Zn2+ is an endogenous biphasic modulator of strychnine-sensitive glycine receptors (GlyRs), the physiological significance of this modulation remains poorly understood. Zn2+ modulation of GlyR may be especially important in the hippocampus where presynaptic Zn2+ is abundant. Using cultured embryonic mouse hippocampal neurons, we examined whether 1 μM Zn2+, a potentiating concentration, enhances the inhibitory effects of GlyRs activated by sustained glycine applications. Sustained 20 μM glycine (EC25) applications alone did not decrease the number of action potentials evoked by depolarizing steps, but they did in 1 μM Zn2+. At least part of this effect resulted from Zn2+ enhancing the GlyR-induced decrease in input resistance. Sustained 20 μM glycine applications alone did not alter neuronal bursting, a form of hyperexcitability induced by omitting extracellular Mg2+. However, sustained 20 μM glycine applications depressed neuronal bursting in 1 μM Zn2+. Zn2+ did not enhance the inhibitory effects of sustained 60 μM glycine (EC70) applications in these paradigms. These results suggest that tonic GlyR activation could decrease neuronal excitability. To test this possibility, we examined the effect of the GlyR antagonist strychnine and the Zn2+ chelator tricine on action potential firing by CA1 pyramidal neurons in mouse hippocampal slices. Co-applying strychnine and tricine slightly but significantly increased the number of action potentials fired during a depolarizing current step and decreased the rheobase for action potential firing. Thus Zn2+ may modulate neuronal excitability normally and in pathological conditions such as seizures by potentiating GlyRs tonically activated by low agonist concentrations.


2007 ◽  
Vol 35 (5) ◽  
pp. 1064-1068 ◽  
Author(s):  
D.P. Mohapatra ◽  
K.-S. Park ◽  
J.S. Trimmer

Voltage-gated K+ channels are key regulators of neuronal excitability. The Kv2.1 voltage-gated K+ channel is the major delayed rectifier K+ channel expressed in most central neurons, where it exists as a highly phosphorylated protein. Kv2.1 plays a critical role in homoeostatic regulation of intrinsic neuronal excitability through its activity- and calcineurin-dependent dephosphorylation. Here, we review studies leading to the identification and functional characterization of in vivo Kv2.1 phosphorylation sites, a subset of which contribute to graded modulation of voltage-dependent gating. These findings show that distinct developmental-, cell- and state-specific regulation of phosphorylation at specific sites confers a diversity of functions on Kv2.1 that is critical to its role as a regulator of intrinsic neuronal excitability.


2002 ◽  
Vol 88 (1) ◽  
pp. 409-421 ◽  
Author(s):  
H. Nadeau ◽  
H. A. Lester

The neuron restrictive silencer factor (NRSF/REST) has been shown to bind to the promoters of many neuron-specific genes and is able to suppress transcription of Na+channels in PC12 cells, although its functional effect in terminally differentiated neurons is unknown. We constructed lentiviral vectors to express NRSF as a bicistronic message with green fluorescent protein (GFP) and followed infected hippocampal neurons in culture over a period of 1–2 wk. NRSF-expressing neurons showed a time-dependent suppression of Na+channel function as measured by whole cell electrophysiology. Suppression was reversed or prevented by the addition of membrane-permeable cAMP analogues and enhanced by cAMP antagonists but not affected by increasing protein expression with a viral enhancer. Secondary effects, including altered sensitivity to glutamate and GABA and reduced outward K+currents, were duplicated by culturing GFP-infected control neurons in TTX. The striking similarity of the phenotypes makes NRSF potentially useful as a genetic “silencer” and also suggests avenues of further exploration that may elucidate the transcription factor's in vivo role in neuronal plasticity.


2019 ◽  
Vol 11 (480) ◽  
pp. eaan0457 ◽  
Author(s):  
Vikram Jakkamsetti ◽  
Isaac Marin-Valencia ◽  
Qian Ma ◽  
Levi B. Good ◽  
Tyler Terrill ◽  
...  

Glucose is the ultimate substrate for most brain activities that use carbon, including synthesis of the neurotransmitters glutamate and γ-aminobutyric acid via mitochondrial tricarboxylic acid (TCA) cycle. Brain metabolism and neuronal excitability are thus interdependent. However, the principles that govern their relationship are not always intuitive because heritable defects of brain glucose metabolism are associated with the paradoxical coexistence, in the same individual, of episodic neuronal hyperexcitation (seizures) with reduced basal cerebral electrical activity. One such prototypic disorder is pyruvate dehydrogenase (PDH) deficiency (PDHD). PDH is central to metabolism because it steers most of the glucose-derived flux into the TCA cycle. To better understand the pathophysiology of PDHD, we generated mice with brain-specific reduced PDH activity that paralleled salient human disease features, including cerebral hypotrophy, decreased amplitude electroencephalogram (EEG), and epilepsy. The mice exhibited reductions in cerebral TCA cycle flux, glutamate content, spontaneous, and electrically evoked in vivo cortical field potentials and gamma EEG oscillation amplitude. Episodic decreases in gamma oscillations preceded most epileptiform discharges, facilitating their prediction. Fast-spiking neuron excitability was decreased in brain slices, contributing to in vivo action potential burst prolongation after whisker pad stimulation. These features were partially reversed after systemic administration of acetate, which augmented cerebral TCA cycle flux, glutamate-dependent synaptic transmission, inhibition and gamma oscillations, and reduced epileptiform discharge duration. Thus, our results suggest that dysfunctional excitability in PDHD is consequent to reduced oxidative flux, which leads to decreased neuronal activation and impaired inhibition, and can be mitigated by an alternative metabolic substrate.


2016 ◽  
Vol 371 (1700) ◽  
pp. 20150431 ◽  
Author(s):  
O. Ievglevskyi ◽  
D. Isaev ◽  
O. Netsyk ◽  
A. Romanov ◽  
M. Fedoriuk ◽  
...  

Acid-sensing ion channels (ASICs) play an important role in numerous functions in the central and peripheral nervous systems ranging from memory and emotions to pain. The data correspond to a recent notion that each neuron and many glial cells of the mammalian brain express at least one member of the ASIC family. However, the mechanisms underlying the involvement of ASICs in neuronal activity are poorly understood. However, there are two exceptions, namely, the straightforward role of ASICs in proton-based synaptic transmission in certain brain areas and the role of the Ca 2+ -permeable ASIC1a subtype in ischaemic cell death. Using a novel orthosteric ASIC antagonist, we have found that ASICs specifically control the frequency of spontaneous inhibitory synaptic activity in the hippocampus. Inhibition of ASICs leads to a strong increase in the frequency of spontaneous inhibitory postsynaptic currents. This effect is presynaptic because it is fully reproducible in single synaptic boutons attached to isolated hippocampal neurons. In concert with this observation, inhibition of the ASIC current diminishes epileptic discharges in a low Mg 2+ model of epilepsy in hippocampal slices and significantly reduces kainate-induced discharges in the hippocampus in vivo . Our results reveal a significant novel role for ASICs. This article is part of the themed issue ‘Evolution brings Ca 2+ and ATP together to control life and death’.


2018 ◽  
Author(s):  
Yoav Adam ◽  
Jeong J. Kim ◽  
Shan Lou ◽  
Yongxin Zhao ◽  
Daan Brinks ◽  
...  

AbstractA technology to record membrane potential from multiple neurons, simultaneously, in behaving animals will have a transformative impact on neuroscience research1. Parallel recordings could reveal the subthreshold potentials and intercellular correlations that underlie network behavior2. Paired stimulation and recording can further reveal the input-output properties of individual cells or networks in the context of different brain states3. Genetically encoded voltage indicators are a promising tool for these purposes, but were so far limited to single-cell recordings with marginal signal to noise ratio (SNR) in vivo4-6. We developed improved near infrared voltage indicators, high speed microscopes and targeted gene expression schemes which enabled recordings of supra- and subthreshold voltage dynamics from multiple neurons simultaneously in mouse hippocampus, in vivo. The reporters revealed sub-cellular details of back-propagating action potentials, correlations in sub-threshold voltage between multiple cells, and changes in dynamics associated with transitions from resting to locomotion. In combination with optogenetic stimulation, the reporters revealed brain state-dependent changes in neuronal excitability, reflecting the interplay of excitatory and inhibitory synaptic inputs. These tools open the possibility for detailed explorations of network dynamics in the context of behavior.


2017 ◽  
Vol 41 (5) ◽  
pp. 2053-2066 ◽  
Author(s):  
Edmund Cheung So ◽  
Sheng-Nan Wu ◽  
Ping-Ching Wu ◽  
Hui-Zhen  Chen ◽  
Chia-Jung Yang

Background: Artemisinin (ART) is an anti-malarial agent reported to influence endocrine function. Methods: Effects of ART on ionic currents and action potentials (APs) in pituitary tumor (GH3) cells were evaluated by patch clamp techniques. Results: ART inhibited the amplitude of delayed-rectifier K+ current (IK(DR)) in response to membrane depolarization and accelerated the process of current inactivation. It exerted an inhibitory effect on IK(DR) with an IC50 value of 11.2 µM and enhanced IK(DR) inactivation with a KD value of 14.7 µM. The steady-state inactivation curve of IK(DR) was shifted to hyperpolarization by 10 mV. Pretreatment of chlorotoxin (1 µM) or iloprost (100 nM) did not alter the magnitude of ART-induced inhibition of IK(DR) in GH3 cells. ART also decreased the peak amplitude of voltage-gated Na+ current (INa) with a concentration-dependent slowing in inactivation rate. Application of KMUP-1, an inhibitor of late INa, was effective at reversing ART-induced prolongation in inactivation time constant of INa. Under current-clamp recordings, ART alone reduced the amplitude of APs and prolonged the duration of APs. Conclusion: Under ART exposure, the inhibitory actions on both IK(DR) and INa could be a potential mechanisms through which this drug influences membrane excitability of endocrine or neuroendocrine cells appearing in vivo.


Sign in / Sign up

Export Citation Format

Share Document