scholarly journals Cerebral Small Vessel Disease

2020 ◽  
Vol 21 (24) ◽  
pp. 9729
Author(s):  
Jakub Litak ◽  
Marek Mazurek ◽  
Bartłomiej Kulesza ◽  
Paweł Szmygin ◽  
Joanna Litak ◽  
...  

Cerebral small vessel disease (CSVD) represents a cluster of various vascular disorders with different pathological backgrounds. The advanced vasculature net of cerebral vessels, including small arteries, capillaries, arterioles and venules, is usually affected. Processes of oxidation underlie the pathology of CSVD, promoting the degenerative status of the epithelial layer. There are several classifications of cerebral small vessel diseases; some of them include diseases such as Binswanger’s disease, leukoaraiosis, cerebral microbleeds (CMBs) and lacunar strokes. This paper presents the characteristics of CSVD and the impact of the current knowledge of this topic on the diagnosis and treatment of patients.

2021 ◽  
Vol 21 ◽  
Author(s):  
Leonardo Ulivi ◽  
Mirco Cosottini ◽  
Gianmichele Migaleddu ◽  
Giovanni Orlandi ◽  
Nicola Giannini ◽  
...  

: Monogenic cerebral small vessel diseases are a topic of growing interest, as several genes responsible have been recently described and new sequencing techniques such as Next generation sequencing are available. Brain imaging is a key exam in these diseases. First, since it is often the first exam performed, an MRI is key in selecting patients for genetic testing and for interpreting Next generation sequencing reports. In addition, neuroimaging can be helpful in describing the underlying pathological mechanisms involved in cerebral small vessel disease. With this review, we aim to provide Neurologists and Stroke physicians with an up-to date overview of the current neuroimaging knowledge on monogenic small vessel diseases.


2020 ◽  
Vol 82 (1) ◽  
pp. 275-295 ◽  
Author(s):  
T. Michael De Silva ◽  
Frank M. Faraci

Cerebral small vessel disease (SVD) is characterized by changes in the pial and parenchymal microcirculations. SVD produces reductions in cerebral blood flow and impaired blood-brain barrier function, which are leading contributors to age-related reductions in brain health. End-organ effects are diverse, resulting in both cognitive and noncognitive deficits. Underlying phenotypes and mechanisms are multifactorial, with no specific treatments at this time. Despite consequences that are already considerable, the impact of SVD is predicted to increase substantially with the growing aging population. In the face of this health challenge, the basic biology, pathogenesis, and determinants of SVD are poorly defined. This review summarizes recent progress and concepts in this area, highlighting key findings and some major unanswered questions. We focus on phenotypes and mechanisms that underlie microvascular aging, the greatest risk factor for cerebrovascular disease and its subsequent effects.


2021 ◽  
Vol 13 ◽  
Author(s):  
Yangyi Fan ◽  
Ming Shen ◽  
Yang Huo ◽  
Xuguang Gao ◽  
Chun Li ◽  
...  

Background: Cerebral small vessel disease (cSVD) and neurodegeneration are the two main causes of dementia and are considered distinct pathological processes, while studies have shown overlaps and interactions between the two pathological pathways. Medial temporal atrophy (MTA) is considered a classic marker of neurodegeneration. We aimed to investigate the relationship of total cSVD burden and MTA on MRI using a total cSVD score and to explore the impact of the two MRI features on cognition.Methods: Patients in a memory clinic were enrolled, who underwent brain MRI scan and cognitive evaluation within 7 days after the first visit. MTA and total cSVD score were rated using validated visual scales. Cognitive function was assessed by using Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scales. Spearman's correlation and regression models were used to test (i) the association between MTA and total cSVD score as well as each cSVD marker and (ii) the correlation of the MRI features and cognitive status.Results: A total of 312 patients were finally enrolled, with a median age of 75.0 (66.0–80.0) years and 40.7% (127/312) males. All of them finished MRI and MMSE, and 293 subjects finished MoCA. Of note, 71.8% (224/312) of the patients had at least one of the cSVD markers, and 48.7% (152/312) of them had moderate–severe MTA. The total cSVD score was independently associated with MTA levels, after adjusting for age, gender, years of education, and other vascular risk factors (OR 1.191, 95% CI 1.071–1.324, P = 0.001). In regard to individual markers, a significant association existed only between white matter hyperintensities and MTA after adjusting for the factors mentioned above (OR 1.338, 95% CI 1.050–1.704, P = 0.018). Both MTA and total cSVD score were independent risk factors for MMSE ≤ 26 (MTA: OR 1.877, 95% CI 1.407–2.503, P < 0.001; total cSVD score: OR 1.474, 95% CI 1.132–1.921, P = 0.004), and MoCA < 26 (MTA: OR 1.629, 95% CI 1.112–2.388, P = 0.012; total cSVD score: OR 1.520, 95% CI 1.068–2.162, P = 0.020). Among all the cSVD markers, microbleed was found significantly associated with MMSE ≤ 26, while no marker was demonstrated a relationship with MoCA < 26.Conclusion: Cerebral small vessel disease was related to MTA in patients of a memory clinic, and both the MRI features had a significant association with cognitive impairment.


2017 ◽  
Vol 131 (8) ◽  
pp. 715-728 ◽  
Author(s):  
J. Matthijs Biesbroek ◽  
Nick A. Weaver ◽  
Geert Jan Biessels

Cerebral small vessel disease (SVD) is an important cause of cognitive impairment. Important MRI manifestations of SVD include white matter hyperintensities (WMH) and lacunes. This narrative review addresses the role of anatomical lesion location in the impact of SVD on cognition, integrating findings from early autopsy studies with emerging findings from recent studies with advanced image analysis techniques. Early autopsy and imaging studies of small case series indicate that single lacunar infarcts in, for example the thalamus, caudate nucleus or internal capsule can cause marked cognitive impairment. However, the findings of such case studies may not be generalizable. Emerging location-based image analysis approaches are now being applied to large cohorts. Recent studies show that WMH burden in strategic white matter tracts, such as the forceps minor or anterior thalamic radiation (ATR), is more relevant in explaining variance in cognitive functioning than global WMH volume. These findings suggest that the future diagnostic work-up of memory clinic patients could potentially be improved by shifting from a global assessment of WMH and lacune burden towards a quantitative assessment of lesion volumes within strategic brain regions. In this review, a summary of currently known strategic regions for SVD-related cognitive impairment is provided, highlighting recent technical developments in SVD research. The potential and challenges of location-based approaches for diagnostic purposes in clinical practice are discussed, along with their potential prognostic and therapeutic applications.


2021 ◽  
Author(s):  
Ana R Fouto ◽  
Rita G. Nunes ◽  
Joana Pinto ◽  
Luísa Alves ◽  
Sofia Calado ◽  
...  

Abstract Purpose Histogram-based metrics extracted from diffusion-tensor imaging (DTI) have been suggested as potential biomarkers for cerebral small vessel disease (SVD), but methods and results have varied across studies. This work aims to assess the impact of mask selection for extracting histogram-based metrics of fractional anisotropy (FA) and mean diffusivity (MD) on their sensitivity as SVD biomarkers.Methods DTI data were collected from 17 SVD patients and 12 healthy controls. For each participant, FA and MD maps were estimated; from these, histograms were computed on two alternative whole-brain white-matter masks: normal-appearing white-matter (NAWM) and mean FA tract skeleton (TBSS). Histogram-based metrics (median, peak height, peak width, peak value) were extracted from the FA and MD maps. These were compared between patients and controls, and correlated with the patients’ cognitive scores (executive function and processing speed).Results White matter mask selection significantly impacted FA and MD histogram metrics and affected their ability to discriminate between groups. Moreover, we observed that the mask can influence the correlations with cognitive measures. Nevertheless, the MD peak height and MD peak width metrics remained significantly correlated with executive function, regardless of the mask.Conclusion Our results corroborate previous reports and further support the value of DTI histogram-based metrics as SVD biomarkers. However, they also highlight the importance of the processing methodology, in particular the choice of white matter mask, as hence the urgent need to mitigate the lack of standardized MRI data-processing pipelines.


2020 ◽  
Vol 11 ◽  
Author(s):  
Banghao Jian ◽  
Mengyan Hu ◽  
Wei Cai ◽  
Bingjun Zhang ◽  
Zhengqi Lu

Aging of the central nervous system (CNS) is closely associated with chronic sterile low-grade inflammation in older organisms and related immune response. As an amplifier for neuro-inflammaging, immunosenescence remodels and deteriorates immune systems gradually with the passage of time, and finally contributes to severe outcomes like stroke, dementia and neurodegeneration in elderly adults. Cerebral small vessel disease (CSVD), one of the major causes of vascular dementia, has an intensive connection with the inflammatory response and immunosenescence plays a crucial role in the pathology of this disorder. In this review, we discuss the impact of immunosenescence on the development of CSVD and its underlying mechanism. Furthermore, the clinical practice significance of immunosenescence management and the diagnosis and treatment of CSVD will be also discussed.


2021 ◽  
Author(s):  
Lowri E Evans ◽  
Jade L Taylor ◽  
Craig J Smith ◽  
Harry A T Pritchard ◽  
Adam S Greenstein ◽  
...  

Abstract Cerebral small vessel disease (cSVD) is the most common cause of vascular cognitive impairment and affects all levels of the brain’s vasculature. Features include diverse structural and functional changes affecting small arteries and capillaries that lead to a decline in cerebral perfusion. Due to an ageing population, incidence of cSVD is continually rising. Despite its prevalence and its ability to cause multiple debilitating illnesses, such as stroke and dementia, there are currently no therapeutic strategies for the treatment of cSVD. In the healthy brain, interactions between neuronal, vascular, and inflammatory cells are required for normal functioning. When these interactions are disturbed, chronic pathological inflammation can ensue. The interplay between cSVD and inflammation has attracted much recent interest, and this review discusses chronic cardiovascular diseases, particularly hypertension, and explores how the associated inflammation may impact on the structure and function of the small arteries of the brain in cSVD. Molecular approaches in animal studies are linked to clinical outcomes in patients, and novel hypotheses regarding inflammation and cSVD are proposed that will hopefully stimulate further discussion and study in this important area.


Author(s):  
R. S. Bartiuk

Cerebral small vessel disease (CSVD) is a common cause of stroke (25 % of all strokes) and has a significant contribution to development dementia, functional loss and increases the risk of death. Validation of methods for assessing the total cerebral small vessel disease burden on CT and MRI makes it possible to more accurately and fully assess the impact of the cumulative effect of cerebrovascular pathology on the development and consequences of stroke after 3 months. The aim of our study was to investigate the prognostic value of the total CSVD burden and its individual features (leukoaraiosis, lacunes, brain atrophy) on the course and outcome of stroke at 90 days. 131 patients with ischemic stroke, diagnosed according to TOAST criteria, were enrolled. All patients underwent computed tomography on a General Electric CT/e device (Italy) with a slice thickness of 3–7 mm. Leukoaraiosis was diagnosed and scored by the visual scale of Fazekas and von Swieten. Brain atrophy was assessed separately in central and cortical regions by validated standard template. Lacunes were defined according to the standard protocol. We calculated the total CSVD burden (composed leukoaraiosis, lacunes, brain atrophy) with and without brain atrophy. We assessed the severity of neurological deficit by the NIHSS scale. The functional outcome and the degree of disability or dependence in the daily activities we measured by modified Rankin scale and Barthel index. MMSE was used to assess cognitive function. Statistical analyses were performed by SPSS 25.0 software (IBM Corp., Armonk, NY, USA). We used Student’s t-test or Mann-Whitney U test, Pearson or Spearman correlation and regression analysis. Our data have shown that cerebral small vessel disease is negatively correlated with the consequences of stroke and reflect brain frailty and impair regenerative potential. The degree of cognitive deficit was associated with negative prognostic consequences of stroke. The total cerebral small vessel disease burden is a valuable prognostic marker of stroke prognosis and can be used as a tool for the assessment of effectiveness of preventive and curative measures.


Sign in / Sign up

Export Citation Format

Share Document