scholarly journals Involvement of the ERK/HIF-1α/EMT Pathway in XCL1-Induced Migration of MDA-MB-231 and SK-BR-3 Breast Cancer Cells

2020 ◽  
Vol 22 (1) ◽  
pp. 89
Author(s):  
Ha Thi Thu Do ◽  
Jungsook Cho

Chemokine–receptor interactions play multiple roles in cancer progression. It was reported that the overexpression of X-C motif chemokine receptor 1 (XCR1), a specific receptor for chemokine X-C motif chemokine ligand 1 (XCL1), stimulates the migration of MDA-MB-231 triple-negative breast cancer cells. However, the exact mechanisms of this process remain to be elucidated. Our study found that XCL1 treatment markedly enhanced MDA-MB-231 cell migration. Additionally, XCL1 treatment enhanced epithelial–mesenchymal transition (EMT) of MDA-MB-231 cells via E-cadherin downregulation and upregulation of N-cadherin and vimentin as well as increases in β-catenin nucleus translocation. Furthermore, XCL1 enhanced the expression of hypoxia-inducible factor-1α (HIF-1α) and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Notably, the effects of XCL1 on cell migration and intracellular signaling were negated by knockdown of XCR1 using siRNA, confirming XCR1-mediated actions. Treating MDA-MB-231 cells with U0126, a specific mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, blocked XCL1-induced HIF-1α accumulation and cell migration. The effect of XCL1 on cell migration was also evaluated in ER-/HER2+ SK-BR-3 cells. XCL1 also promoted cell migration, EMT induction, HIF-1α accumulation, and ERK phosphorylation in SK-BR-3 cells. While XCL1 did not exhibit any significant impact on the matrix metalloproteinase (MMP)-2 and -9 expressions in MDA-MB-231 cells, it increased the expression of these enzymes in SK-BR-3 cells. Collectively, our results demonstrate that activation of the ERK/HIF-1α/EMT pathway is involved in the XCL1-induced migration of both MDA-MB-231 and SK-BR-3 breast cancer cells. Based on our findings, the XCL1–XCR1 interaction and its associated signaling molecules may serve as specific targets for the prevention of breast cancer cell migration and metastasis.

2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Yifan Wang ◽  
Ruocen Liao ◽  
Xingyu Chen ◽  
Xuhua Ying ◽  
Guanping Chen ◽  
...  

Abstract Breast cancer is considered to be the most prevalent cancer in women worldwide, and metastasis is the primary cause of death. Protease-activated receptor 1 (PAR1) is a GPCR family member involved in the invasive and metastatic processes of cancer cells. However, the functions and underlying mechanisms of PAR1 in breast cancer remain unclear. In this study, we found that PAR1 is highly expressed in high invasive breast cancer cells, and predicts poor prognosis in ER-negative and high-grade breast cancer patients. Mechanistically, Twist transcriptionally induces PAR1 expression, leading to inhibition of Hippo pathway and activation of YAP/TAZ; Inhibition of PAR1 suppresses YAP/TAZ-induced epithelial-mesenchymal transition (EMT), invasion, migration, cancer stem cell (CSC)-like properties, tumor growth and metastasis of breast cancer cells in vitro and in vivo. These findings suggest that PAR1 acts as a direct transcriptionally target of Twist, can promote EMT, tumorigenicity and metastasis by controlling the Hippo pathway; this may lead to a potential therapeutic target for treating invasive breast cancer.


2014 ◽  
Vol 60 (3) ◽  
pp. 322-331 ◽  
Author(s):  
E.A. Avilova ◽  
O.E. Andreeva ◽  
V.A. Shatskaya ◽  
M.A. Krasilnikov

The main goal of this work was to study the intracellular signaling pathways responsible for the development of hormone resistance and maintaining the autonomous growth of breast cancer cells. In particular, the role of PAK1 (p21-activated kinase 1), the key mitogenic signaling protein, in the development of cell resistance to estrogens was analyzed. In vitro studies were performed on cultured breast cancer cell lines: estrogen-dependent estrogen receptor (ER)-positive MCF-7 cells and estrogen-resistant ER-negative HBL-100 cells. We found that the resistant HBL-100 cells were characterized by a higher level of PAK1 and demonstrated PAK1 involvement in the maintaining of estrogen-independent cell growth. We have also shown PAK1 ability to up-regulate Snail1, one of the epithelial-mesenchymal transition proteins, and obtained experimental evidence for Snail1 importance in the regulation of cell proliferation. In general, the results obtained in this study demonstrate involvement of PAK1 and Snail1 in the formation of estrogen-independent phenotype of breast cancer cells showing the potential role of both proteins as markers of hormone resistance of breast tumors.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Ziqian Yan ◽  
Zhimei Sheng ◽  
Yuanhang Zheng ◽  
Ruijun Feng ◽  
Qinpei Xiao ◽  
...  

AbstractStudies have shown that cancer-associated fibroblasts (CAFs) play an irreplaceable role in the occurrence and development of tumors. Therefore, exploring the action and mechanism of CAFs on tumor cells is particularly important. In this study, we compared the effects of CAFs-derived exosomes and normal fibroblasts (NFs)-derived exosomes on breast cancer cells migration and invasion. The results showed that exosomes from both CAFs and NFs could enter into breast cancer cells and CAFs-derived exosomes had a more enhancing effect on breast cancer cells migration and invasion than NFs-derived exosomes. Furthermore, microRNA (miR)-18b was upregulated in CAFs-derived exosomes, and CAFs-derived exosomes miR-18b can promote breast cancer cell migration and metastasis by specifically binding to the 3′UTR of Transcription Elongation Factor A Like 7 (TCEAL7). The miR-18b-TCEAL7 pathway promotes nuclear Snail ectopic activation by activating nuclear factor-kappa B (NF-κB), thereby inducing epithelial-mesenchymal transition (EMT) and promoting cell invasion and metastasis. Moreover, CAFs-derived exosomes miR-18b could promote mouse xenograft model tumor metastasis. Overall, our findings suggest that CAFs-derived exosomes miR-18b promote nuclear Snail ectopic by targeting TCEAL7 to activate the NF-κB pathway, thereby inducing EMT, invasion, and metastasis of breast cancer. Targeting CAFs-derived exosome miR-18b may be a potential treatment option to overcome breast cancer progression.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 278-278
Author(s):  
Ana Carolina Silveira Rabelo ◽  
Maria Angelica Miglino ◽  
Shirley Arbizu ◽  
Susanne Talcott ◽  
Ana Cláudia Carreira ◽  
...  

Abstract Objectives To investigate the mechanisms underlying the anticancer activity of Calotropis procera crude phenolics extract (CphE). Methods CphE were obtained from leaves homogenized with ethanol (1g:150 mL), followed by filtration and evaporation using a rotary evaporator. Quercetin was used as a positive control since is one of the major flavonoids in C. procera. 4T1 cells were treated with CphE (31–500 µg gallic acid equivalent (GAE)/mL), quercetin (Q) (0.6–3 µg/mL) or DMSO (control) to assess cell viability using resazurin kit and reactive oxygen species (ROS) using the Carboxy-H2DFFDA probe (Sigma-Aldrich, St Louis, MO). Protein and mRNA expression were investigated using standard procedures and cell migration by wound healing assay. Results 4T1 cell viability was inhibited by CphE (within 31–125 µg GAE/mL) and Q (0.6–3 µg/mL) in a dose-dependent manner, with IC50 = 49.6 µg GAE/mL and 1,75 µg/mL, respectively. However, ROS levels were decreased in cells treated with CphE (down to 0.7-fold of control) while Q induced ROS (up to 1.5-fold of control). These results suggest a contrasting response from 4T1 breast cancer cells to individual phenolics present in CphE. The CphE-induced caspase and PARP-dependent apoptosis and cell viability suppression were mediated by CphE-mediated oxidative stress reduction consistent with phospho-ERK1/2 downregulation (down to 0.4-fold of control). Conversely, Q apoptotic and cell viability suppression mechanisms are mediated by induction of ROS-phospho-ERK1/2 (up to 1.6-fold of control) axis. The Akt/mTOR/CREB pathway was downregulated at a similar extend by CphE and Q, consistent with cell migration (suppressed by 40% and 20% by CphE and Q, respectively) and with protein levels of phospho-Src (downregulated to ∼ 0.2-fold and 0.4-fold of control) and phospho-CREB (0.7-fold and 0.6-fold of control) by CphE and Q, respectively. Conclusions CphE inhibited cell viability, induced apoptosis and reduced cell migration. These effects were the result of the modulation of proteins that play an important role in epithelial-mesenchymal transition and cell invasion. These findings provide new insights into the anti-cancer mechanisms of C. procera as a promising herb used in folk medicine for breast cancer treatment. Funding Sources Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Universidade de São Paulo (USP).


2020 ◽  
Vol 3 (7) ◽  
pp. e202000683 ◽  
Author(s):  
Ji Hye Yang ◽  
Nam Hee Kim ◽  
Jun Seop Yun ◽  
Eunae Sandra Cho ◽  
Yong Hoon Cha ◽  
...  

Despite the importance of mitochondrial fatty acid oxidation (FAO) in cancer metabolism, the biological mechanisms responsible for the FAO in cancer and therapeutic intervention based on catabolic metabolism are not well defined. In this study, we observe that Snail (SNAI1), a key transcriptional repressor of epithelial–mesenchymal transition, enhances catabolic FAO, allowing pro-survival of breast cancer cells in a starved environment. Mechanistically, Snail suppresses mitochondrial ACC2 (ACACB) by binding to a series of E-boxes located in its proximal promoter, resulting in decreased malonyl-CoA level. Malonyl-CoA being a well-known endogenous inhibitor of fatty acid transporter carnitine palmitoyltransferase 1 (CPT1), the suppression of ACC2 by Snail activates CPT1-dependent FAO, generating ATP and decreasing NADPH consumption. Importantly, combinatorial pharmacologic inhibition of pentose phosphate pathway and FAO with clinically available drugs efficiently reverts Snail-mediated metabolic reprogramming and suppresses in vivo metastatic progression of breast cancer cells. Our observations provide not only a mechanistic link between epithelial–mesenchymal transition and catabolic rewiring but also a novel catabolism-based therapeutic approach for inhibition of cancer progression.


2018 ◽  
Vol 243 (5) ◽  
pp. 473-480 ◽  
Author(s):  
Peng Ma ◽  
Kan Ni ◽  
Jing Ke ◽  
Wenyi Zhang ◽  
Ying Feng ◽  
...  

Recently, accumulating evidence provides that dysregulation of microRNAs (miRNAs) is considered to play vital roles in tumor progression. Based on microRNA arrays, we found that microRNA-448 (miR-448) was significantly downregulated in breast cancer tissue specimens. In our study, we were in an effort to clarify the function, the direct target gene, and the molecular mechanisms of miR-448 in breast cancer. By quantitative RT–PCR, we analyzed the expression of miR-448 in 16 patients with BC. Overexpression of miR-448 was established by transfecting miR-448-mimics into MDA-MB-231 and MCF-7 cells, methyl thiazolyl- tetrazolium and colony formation assays were performed to evaluate its effects on cell proliferation. We also performed cell migration and invasion assays in breast cells overexpressing miRNA-448. All the results indicated that overexpression of miR-448 in breast cancer cells markedly suppressed cell proliferation, migration, and invasion. Through the quantitative RT–PCR and Western Blots, we also evaluated epithelial–mesenchymal transition. We found that overexpression of miR-448 also downregulated the expression of vimentin, a well-known mesenchymal marker. Meanwhile, the epithelial marker E-cadherin was unregulated, suggesting that miR-448 inhibited epithelial–mesenchymal transition . Bioinformatics assay coupled with Western Blot and luciferase assays revealed that miR-448 directly binds to the 3′UTR of E-cadherin repressor ZEB1/2, resulting in suppression of epithelial–mesenchymal transition in breast cancer cells. Impact statement In our study, we revealed that miR-448 played a vital role in breast cancer development and we also uncovered the mechanisms of it. Following is the short description of the main findings: miR-448 is downregulated in BC. miR-448 regulates cell proliferation, migration, and invasion in BC. miR-448 specifically regulates ZEB1/2  through binding to the 3′UTR in BC cells. miR-448 inhibits cell migration, invasion,  and EMT by targeting to the 3′UTR of  ZEB1/2.


2021 ◽  
Author(s):  
Qin Ye ◽  
Xing Wang ◽  
Mei Yuan ◽  
Shuaishuai Cui ◽  
Yuanyuan Chen ◽  
...  

miR-219-5p has been reported to act as either a tumor suppressor or a tumor promoter in different cancers by targeting different genes. In this study, we demonstrated that miR-219-5p negatively regulated the expression of TBXT , a known EMT inducer, by directly binding to TBXT 3’-untranslated region. As a result of its inhibition on TBXT expression, miR-219-5p suppressed epithelial-mesenchymal transition (EMT) and cell migration and invasion in breast cancer cells. The re-introduction of TBXT in miR-219-5p overexpressing cells decreased the inhibitory effects of miR-219 on EMT and cell migration and invasion. Moreover, miR-219-5p decreased breast cancer stem cell (CSC) marker genes expression and reduced the mammosphere forming capability of cells. Overall, our study highlighted that TBXT is a novel target of miR-219-5p. By suppressing TBXT, miR-219-5p plays an important role in EMT and cell migration and invasion of breast cancer cells.


Sign in / Sign up

Export Citation Format

Share Document