scholarly journals MicroRNA-128 Confers Anti-Endothelial Adhesion and Anti-Migration Properties to Counteract Highly Metastatic Cervical Cancer Cells’ Migration in a Parallel-Plate Flow Chamber

2020 ◽  
Vol 22 (1) ◽  
pp. 215
Author(s):  
Pei-Chin Chuang ◽  
Chun-Wun Lu ◽  
Ching-Chin Tsai ◽  
Shun-Hung Tseng ◽  
Wen-Hong Su

Despite the distant metastasis of cervical cancer cells being a prominent cause of mortality, neither the metastasis capacity nor the in vitro conditions mimicking adhesion of cervical cancer cells to endothelial cells have been fully elucidated. Circulating metastatic cancer cells undergo transendothelial migration and invade normal organs in distant metastasis; however, the putative molecular mechanism remains largely uncertain. In this study, we describe the use of an in vitro parallel-plate flow chamber to simulate the dynamic circulation stress on cervical cancer cells and elucidate their vascular adhesion and metastasis. We isolate the viable and shear stress-resistant (SSR) cervical cancer cells for mechanistic studies. Remarkably, the identified SSR-HeLa and SSR-CaSki exhibited high in vitro adhesive and metastatic activities. Hence, a consistently suppressed miR-128 level was revealed in SSR cell clones compared to those of parental wild-type (WT) cells. Overexpressed miR-128 attenuated SSR-HeLa cells’ adherence to human umbilical cord vein endothelial cells (HUVECs); in contrast, suppressed miR-128 efficiently augmented the static adhesion capacity in WT-HeLa and WT-CaSki cells. Hence, amplified miR-128 modestly abolished in vitro SSR-augmented HeLa and CaSki cell movement, whereas reduced miR-128 aggravated the migration speed in a time-lapse recording assay in WT groups. Consistently, the force expression of miR-128 alleviated the SSR-enhanced HeLa and CaSki cell mobility in a wound healing assay. Notably, miR-128 mediated SSR-enhanced HeLa and CaSki cells’ adhesion and metastasis through suppressed ITGA5, ITGB5, sLex, CEACAM-6, MMP9, and MMP23 transcript levels. Our data provide evidence suggesting that miR-128 is a promising microRNA that prevented endothelial cells’ adhesion and transendothelial migration to contribute to the SSR-enhanced adhesion and metastasis progression under a parallel-plate flow chamber system. This indicates that the nucleoid-based miR-128 strategy may be an attractive therapeutic strategy to eliminate tumor cells resistant to circulation shear flow, prevent vascular adhesion, and preclude subsequent transendothelial metastasis.

2021 ◽  
Author(s):  
Huilin Zhang ◽  
Ping He ◽  
Qing Zhou ◽  
Yan Lu ◽  
Bingjian Lu

Abstract BackgroundsCSN5, a member of Cop9 signalosome, is essential for protein neddylation. It has been supposed to serve as an oncogene in some cancers. However, the role of CSN5 has not been investigated in cervical cancer yet.MethodsData from TCGA cohorts and GEO dataset was analyzed to examine the expression profile of CSN5 in cervical cancers. The role of CSN5 on cervical cancer cell proliferation was investigated in cervical cancer cell lines, Siha and Hela, through CSN5 knockdown via CRISPR-CAS9. Western blot was used to detect the effect of CSN5 knockdown and overexpression. CCK8, clone formation assay and cell cycle assay were also employed. Besides, the role CSN5 knockdown in vivo was evaluated by xenograft tumor model. Moreover, MLN4924 was applied in Siha and Hela with CSN5 overexpression.ResultsWe found that downregulation of CSN5 in Siha and Hela cells inhibited cell proliferation in vitro and in vivo, and the inhibitory effects were largely rescued by CSN5 overexpression. Moreover, deletion of CSN5 caused cell cycle arrest rather than inducing apoptosis. Importantly, CSN5 overexpression confers resistance to the anti-cancer effects of MLN4924 (pevonedistat) in cervical cancer cells.ConclusionsOur findings demonstrated that CSN5 functions as an oncogene in cervical cancers and may serve as a potential indicator for predicting the effects of MLN4924 treatment in the future.


2018 ◽  
Vol 18 (1) ◽  
pp. 52-54
Author(s):  
Sothing Vashum ◽  
Rabi Raja Singh I ◽  
Saikat Das ◽  
Mohammed Azharuddin KO ◽  
Prabhakaran Vasudevan

AbstractAimDNA double-strand break (DSB) results in the phosphorylation of the protein, H.2AX histone. In this study, the effect of radiotherapy and chemotherapy on DNA DSB in cervical cancer cells is analysed by the phosphorylation of the protein.MethodsThe cervical cancer cells (HeLa cells) were cultured and exposed to ionising radiation. Radiation sensitivity was measured by clonogenic survival fraction after exposing to ionising radiation. Since the phosphorylation of H.2AX declines with time, the DNA damage was quantified at different time points: 1 hour, 3 hours and 1 week after exposed to the radiation. The analysis of γ-H.2AX was done by Western-blot technique. The protein expression was observed at different dose of radiation and combination of both radiation and paclitaxel.ResultsLow-dose hypersensitivity was observed. By 1 week after radiation at 0·5, 0·8 and 2 Gy, there was no expression of phosphorylated H.2AX. Previous experiments on the expression of phosphorylated H.2AX (γ-H.2AX) in terms of foci analysis was found to peak at 1 hour and subsequently decline with time. In cells treated with the DNA damaging agents, the expression of phosphorylated H.2AX decreases in a dose-dependent manner when treated with radiation alone. However, when combined with paclitaxel, at 0·5 Gy, the expression peaked and reduces at 0·8 Gy and slightly elevated at 2 Gy.FindingsIn this study, the peak phosphorylation was observed at 3 hour post irradiation indicating that DSBs are still left unrepaired.


Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 592-601 ◽  
Author(s):  
P. Sriramarao ◽  
Richard G. DiScipio ◽  
Ronald R. Cobb ◽  
Myron Cybulsky ◽  
Greg Stachnick ◽  
...  

The ability of the 4 integrin counterligands vascular cell adhesion molecule (VCAM)-1 or mucosal addressin (MAd)CAM-1 to support eosinophil rolling or firm adhesion under conditions of physiologic flow has not been delineated. Using a parallel plate flow chamber in vitro and intravital microscopy in vivo, we demonstrate that eosinophil rolling and adhesion on VCAM-1 is mediated by both 4β1 and 4β7 integrins. Eosinophils rolled equally efficiently on both VCAM-1 2 domain and VCAM-1 7 domain, suggesting that the N-terminal 2 domains of VCAM-1 are sufficient to support eosinophil rolling under conditions of flow. Furthermore, activation of the eosinophil β1 integrin with monoclonal antibody (mAb) 8A2 resulted in both resistance to shear stress–induced detachment from VCAM-1 in vitro and in stable arrest of rolling eosinophils on interleukin (IL)-1β–stimulated venules in vivo. Eosinophils rolled less efficiently on MAdCAM-1– than on VCAM-1–coated coverslips under conditions of flow. However, eosinophils firmly adhered as efficiently to MAdCAM-1 as to VCAM-1. Overall, these results demonstrate that both VCAM-1 and MAdCAM-1 can support eosinophil firm adhesion under conditions of flow. In contrast, VCAM-1 is significantly more efficient than MAdCAM-1 in supporting eosinophil rolling under conditions of flow.


2015 ◽  
Vol 3 ◽  
pp. 236-240
Author(s):  
Yue-Can Zeng ◽  
Rong Wu ◽  
Yu-Ping Xiao ◽  
Yan Xin ◽  
Feng Chi ◽  
...  

1996 ◽  
Vol 60 (3) ◽  
pp. 373-379 ◽  
Author(s):  
Katsuyuki Hamada ◽  
Wei-Wei Zhang ◽  
Ramon Alemany ◽  
Judith Wolf ◽  
Jack A. Roth ◽  
...  

2018 ◽  
Vol 45 (5) ◽  
pp. 2086-2094 ◽  
Author(s):  
Jing Dong ◽  
Qing Wang ◽  
Li Li ◽  
Zhang Xiao-jin

Background/Aims: Cervical cancer, which is one of the most aggressive cancers affecting females, has high rates of recurrence and mortality. Small nucleolar RNA host gene 12 (SNHG12) is known to promote the progression of several cancers; however, its exact effects and molecular mechanisms in cervical cancer remain unknown. Methods: Real-time quantitative PCR was used to determine the expression level of SNHG12 in cervical cancer tissues and cell lines. Loss-of-function assays were performed to examine the effect of SNHG12 on the proliferation, apoptosis, migration and invasion of cervical cancer cells in vitro and tumor growth in vivo. Luciferase experiments were employed to explore the interactions between SNHG12 and miR-424-5p. Results: SNHG12 was found to be abnormally elevated in human cervical cancer tissues compared with paired adjacent normal tissues. Moreover, high SNHG12 expression in tumor tissues was significantly correlated with vascular involvement, lymph node metastasis, advanced FIGO stage and poor prognosis. Furthermore, the knockdown of SNHG12 was found to inhibit proliferation, migration and invasion of cervical cancer cells in vitro, and silencing SNHG12 was shown to suppress tumor growth in a nude mouse model. Mechanistic studies showed that SNHG12 functioned as an endogenous sponge for miR-424-5p, thereby downregulating the expression of miR-424-5p in cervical cancer. Furthermore, the inhibition of miR-424-5p in SNHG12-depleted cells partially reversed the effects on cervical cancer cell apoptosis, adhesion and invasion. Conclusion: In summary, our findings suggest that the tumor-promoting role of SNHG12 is to function as a molecular sponge, which negatively regulates miR-424-5p. These findings may provide a potent therapeutic target for cervical cancer.


2021 ◽  
Vol 21 (12) ◽  
pp. 6196-6204
Author(s):  
Shu Wen ◽  
Weiping Xing ◽  
Lingxue Gao ◽  
Shuping Zhao

This study aimed to investigate the effects of DMSO@γ-Fe2O3 nanomagnetic fluid thermotherapy combined with the chemotherapy drug carmustine on cervical cancer cells under a certain intensity of alternating magnetic field. And the role of Mir-590-3P in the development and progression of cervical cancer. The optimal thermotherapy concentration of γ-Fe2O3 nanomaterials on cervical cancer cells was determined by in vitro heating. In addition, the MTT colorimetric method was used to evaluate the toxic effect of γ-Fe2O3 magnetic nanoparticles on cervical cancer cells, and the optimal therapeutic concentration of carbachol on cervical cancer cells was optimized (0.015 g · L−1). The cervical cancer cells were divided into control, γ-Fe2O3 hyperthermia, chemotherapy, and DMSO@γ-Fe2O3 combined chemotherapy groups. After 2 h exposure to hypothermic conditions, flow cytometry was used to assess cell apoptosis for each group. The heating effect of the γ-Fe2O3 magnetic nanomaterials was apparent. When the concentration of γ-Fe2O3 was ≥6 g· L−1, the temperature rise above 41 °C. γ-Fe2O3 is non-toxic to cervical cancer cells and has good biocompatibility. Taking the drug concentration of IC25 as the working concentration of this study, the working concentration of carmustine was 0.015 g · L−1. Both the 41 °C heat treatment and chemotherapy alone had a killing effect on glioma and cervical cancer cells (P < 0.05). Additionally, the combined inhibitory effect of DMSO@γ-Fe2O3 nanomagnetic fluid thermotherapy and drugs at this temperature was significantly stronger than that of thermotherapy and chemotherapy alone (P < 0.05). For the control, gamma-Fe2O3 hyperthermia, chemotherapy, and DMSO@γ-Fe2O3 combined chemotherapy groups, the apoptosis rates of the cervical cancer cells were 1.4%, 18.6%, 24.12%, and 38.97%, respectively. DMSO@γ-Fe2O3 nanomagnetic fluid thermotherapy combined with the chemotherapeutic drug carmustine exerted a noticeable toxic effect on the cervical cancer cells, and DMSO@γ-Fe2O3 significantly enhanced the killing effect of carmustine on cervical cancer cells.


Sign in / Sign up

Export Citation Format

Share Document