The Potential Oncogenic and MLN4924-Resistant Effects of CSN5 on Cervical Cancer Cells

Author(s):  
Huilin Zhang ◽  
Ping He ◽  
Qing Zhou ◽  
Yan Lu ◽  
Bingjian Lu

Abstract BackgroundsCSN5, a member of Cop9 signalosome, is essential for protein neddylation. It has been supposed to serve as an oncogene in some cancers. However, the role of CSN5 has not been investigated in cervical cancer yet.MethodsData from TCGA cohorts and GEO dataset was analyzed to examine the expression profile of CSN5 in cervical cancers. The role of CSN5 on cervical cancer cell proliferation was investigated in cervical cancer cell lines, Siha and Hela, through CSN5 knockdown via CRISPR-CAS9. Western blot was used to detect the effect of CSN5 knockdown and overexpression. CCK8, clone formation assay and cell cycle assay were also employed. Besides, the role CSN5 knockdown in vivo was evaluated by xenograft tumor model. Moreover, MLN4924 was applied in Siha and Hela with CSN5 overexpression.ResultsWe found that downregulation of CSN5 in Siha and Hela cells inhibited cell proliferation in vitro and in vivo, and the inhibitory effects were largely rescued by CSN5 overexpression. Moreover, deletion of CSN5 caused cell cycle arrest rather than inducing apoptosis. Importantly, CSN5 overexpression confers resistance to the anti-cancer effects of MLN4924 (pevonedistat) in cervical cancer cells.ConclusionsOur findings demonstrated that CSN5 functions as an oncogene in cervical cancers and may serve as a potential indicator for predicting the effects of MLN4924 treatment in the future.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Huilin Zhang ◽  
Ping He ◽  
Qing Zhou ◽  
Yan Lu ◽  
Bingjian Lu

Abstract Background CSN5, a member of Cop9 signalosome, is essential for protein neddylation. It has been supposed to serve as an oncogene in some cancers. However, the role of CSN5 has not been investigated in cervical cancer yet. Methods Data from TCGA cohorts and GEO dataset was analyzed to examine the expression profile of CSN5 and clinical relevance in cervical cancers. The role of CSN5 on cervical cancer cell proliferation was investigated in cervical cancer cell lines, Siha and Hela, through CSN5 knockdown via CRISPR–CAS9. Western blot was used to detect the effect of CSN5 knockdown and overexpression. The biological behaviors were analyzed by CCK8, clone formation assay, 3-D spheroid generation assay and cell cycle assay. Besides, the role CSN5 knockdown in vivo was evaluated by xenograft tumor model. MLN4924 was given in Siha and Hela with CSN5 overexpression. Results We found that downregulation of CSN5 in Siha and Hela cells inhibited cell proliferation in vitro and in vivo, and the inhibitory effects were largely rescued by CSN5 overexpression. Moreover, deletion of CSN5 caused cell cycle arrest rather than inducing apoptosis. Importantly, CSN5 overexpression confers resistance to the anti-cancer effects of MLN4924 (pevonedistat) in cervical cancer cells. Conclusions Our findings demonstrated that CSN5 functions as an oncogene in cervical cancers and may serve as a potential indicator for predicting the effects of MLN4924 treatment in the future.


2021 ◽  
Vol 11 ◽  
Author(s):  
Min Li ◽  
Jing Wang ◽  
Hongli Ma ◽  
Li Gao ◽  
Kunxiang Zhao ◽  
...  

Cervical cancer is one of the most severe and prevalent female malignancies and a global health issue. The molecular mechanisms underlying cervical cancer development are poorly investigated. As a type of extracellular membrane vesicles, EVs from cancer cells are involved in cancer progression by delivering regulatory factors, such as proteins, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). In this study, we identified an innovative function of extracellular vesicle (EV) lncRNA AGAP2-AS1 in regulating cervical cancer cell proliferation. The EVs were isolated from the cervical cancer cells and were observed by transmission electron microscopy (TEM) and were confirmed by analyzing exosome markers. The depletion of AGAP2-AS1 by siRNA significantly reduced its expression in the exosomes from cervical cancer and in the cervical cancer treated with AGAP2-AS1-knockdown exosomes. The expression of AGAP2-AS1 was elevated in the clinical cervical cancer tissues compared with the adjacent normal tissues. The depletion of EV AGAP2-AS1 reduced cell viabilities and Edu-positive cervical cancer cells, while it enhanced cervical cancer cell apoptosis. Tumorigenicity analysis in nude mice showed that the silencing of EV AGAP2-AS1 attenuated cervical cancer cell growth in vivo. Regarding the mechanism, we identified that AGAP2-AS1 increased SIRT1 expression by sponging miR-3064-5p in cervical cancer cells. The overexpression of SIRT1 or the inhibition of miR-3064-5p reversed EV AGAP2-AS1 depletion-inhibited cancer cell proliferation in vitro. Consequently, we concluded that EV lncRNA AGAP2-AS1 contributed to cervical cancer cell proliferation through regulating the miR-3064-5p/SIRT1 axis. The clinical values of EV lncRNA AGAP2-AS1 and miR-3064-5p deserve to be explored in cervical cancer diagnosis and treatments.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Chang Yang ◽  
Zhao-Cong Zhang ◽  
Tian -Bo Liu ◽  
Ye Xu ◽  
Bai-Rong Xia ◽  
...  

Abstract Background Cervical cancer is the second leading cause of death in women 20–39 years old. Because coverage for cervical cancer screening is low, and the vaccination rate of human papillomavirus (HPV) is poor in some countries, potential markers to detect the disease at early stages are needed. E2F transcription factors (E2Fs) are a family of transcription factors that function in cell proliferation, differentiation, apoptosis, and tumorigenesis. As abnormal activation and regulation of E2Fs are related to tumor development and poor prognosis, we performed bioinformatic analyses and in vitro assays to evaluate the role of E2Fs in cervical cancer. Methods Transcriptional expression of E2Fs was initially evaluated in silico using ONCOMINE and Gene Expression Profiling Interactive Analysis (GEPIA), followed by evaluation of E2F1/2/7/8 protein levels using immunohistochemistry in 88 patient tissues. E2F2 and E2F7 mRNA levels were measured by RT-qPCR. LinkedOmics and Metascape were used to predict functions of E2Fs, and in vitro experiments were performed to assess the tumorigenic role of E2F2 and E2F7. Results In silico analysis showed that E2F1/2/7/8 were significantly overexpressed in cervical cancer, findings which were confirmed at the protein level using immunohistochemistry. Further, upregulation of E2F1/2/7/8 was associated with different clinicopathological prognostic factors, including positivity for lymph vessel invasion and deep invasion of cervical stroma. Increased expression of E2F1/2/7/8 was also related to shorter overall survival (OS) and disease-free survival (DFS) in patients with cervical cancer. Using multivariate analysis, we confirmed E2F1/2/7/8 as independent prognostic factors for shorter OS of patients with cervical cancer. Finally, in vitro experiments showed that E2F2 and E2F7 are involved in cell proliferation and migration and cell cycle regulation in both HPV-positive and HPV-negative cervical cancer cells. Conclusions E2F1/2/7/8 may be prognostic biomarkers for survival of patients with cervical cancer. E2F2 and E2F7 are involved in cell proliferation, migration, and cell cycle in both HPV-positive and HPV-negative cervical cancer cells.


2018 ◽  
Vol 96 (1) ◽  
pp. 38-43 ◽  
Author(s):  
Yang Liu ◽  
Yanling Yang ◽  
Lei Li ◽  
Yuan Liu ◽  
Peng Geng ◽  
...  

Objective: This study investigated the effects of lncRNA SNHG1 on the proliferation, migration, and invasiveness of cervical cancer cells. Methods: Three pairs of cervical cancer tissue samples and their corresponding adjacent samples were analyzed using Human LncRNA Microarray V3.0 chip for differential analysis. The expression of SNHG1 in cervical cancer cell lines was verified by qRT–PCR. CCK8 assays and colony formation assays were used to study the changes in cell proliferation. Cell migration and Transwell assays were used to study changes in cell migration and invasiveness. Results: SNHG1 was highly expressed in cervical cancer tissues and cervical cancer cell lines. SNHG1 siRNA could knock-down the expression level of SNHG1 in cervical cancer cell lines HeLa and C33-A. After knock-down of SNHG1, cell proliferation and migration as well as invasiveness in HeLa and C-33A cells decreased. Conclusion: LncRNA SNHG1 promotes the development of cervical cancer cells.


2019 ◽  
Author(s):  
Miriam Gutiérrez-Gutiérrez ◽  
Ishell Aline Figueroa-Martínez ◽  
Rafael Jurado ◽  
Norma Uribe ◽  
Patricia García-López ◽  
...  

Abstract Background: Diabetes mellitus and malignant tumor are the second and third causes of women death in Mexico. Hyperglycemia, insulin and insulin-like growth factor 1 are the main risk factors involved in cancer development in patient with diabetes. The aim of this study was to evaluate the effect of hyperglycemia and hyperinsulinemia over cell proliferation and tumor growth in cervical cancer. Methods: Cell proliferation, apoptosis and cell cycle of cervical cancer cell lines (HeLa, SiHa and CaSki) in presence of hyperglycemia and/or insulin were evaluated. Xenograft model for cervical cancer was done in diabetic female nu/nu mice; biochemical parameters, body weight, tumoral volume and cell doubling time were evaluated. Results: Hyperglycemia and hyperinsulinemia significantly increase cell proliferation and decreases apoptosis with no change in cell cycle. Insulin treatment increase tumor volume and diminish cell doubling time, this group also developed hyperinsulinemia and in Langerhans pancreatic islet hypertrophy; whereas, hyperglycemic groups show the same effects but in lesser degree than the insulin treated group. Conclusion: Glucose and insulin stimulates both, proliferation and tumoral growth of cervical cancer, so this should be a possible explanation for the low survival of diabetic patients with cervical cancer in compare to non-diabetic patients with cervical cancer.


2021 ◽  
Vol 28 ◽  
Author(s):  
Yuan Pan ◽  
Yuting Jiang ◽  
Yingli Cui ◽  
Jihong Zhu ◽  
Yang Yu

Background : Lactoferricin peptide (LP) has been reported to control cancer cell proliferation. NF‐κB interacting lncRNA (NKILA) is a tumor suppressor in several cancers. Objective: We aimed to explore the potential function of the truncated LP (TLP) in the prevention of cervical cancer cell proliferation. Methods: Bioinformatics analysis via PPA-Pred2 showed that 18-aa N-terminus of truncated lactoferricin peptide (TLP18, FKCRRWQWRMKKLGAPSI) shows higher affinity with nuclear factor kappaB (NF-κB) than LP. The effects of LP and TLP18 on cervical cancer cells SiHa and HeLa and the related mechanisms were explored by investigating NF‐κB and lncRNA-NKILA. Results : TLP18 shows an inhibitory rate up to 0.4-fold higher than LP on the growth of cervical cancer cells (P<0.05). NKILA siRNA promoted cell growth whether LP or TLP18 treatment (P<0.05). TLP18 treatment increases the level of lncRNA-NKILA and reduces the level of NF‐κB up to 0.2-fold and 0.6-fold higher than LP (P<0.05), respectively. NKILA siRNA increased the levels of NF‐κB, cleaved caspase-3, and BAX (P<0.05). TLP18 increased apoptotic cell rate up to 0.2-fold higher than LP, while NKILA siRNA inhibited cell apoptosis cell growth even LP or TLP18 treatment. Conclusion: Truncated Lactoferricin peptide controls cervical cancer cell proliferation via lncRNA-NKILA/NF‐κB feedback loop.


2016 ◽  
Vol 94 (5) ◽  
pp. 526-533 ◽  
Author(s):  
Yan Zhao ◽  
Xinyu Wang ◽  
Lei Li ◽  
Changzhong Li

The clinical management of cervical cancer remains a challenge and the development of new treatment strategies merits attention. However, the discovery and development of novel compounds can be a long and labourious process. Drug repositioning may circumvent this process and facilitate the rapid translation of hypothesis-driven science into the clinics. In this work, we show that a FDA-approved antibiotic, doxycycline, effectively targets human papillomavirus (HPV) positive and negative cervical cancer cells in vitro and in vivo. Doxycycline significantly inhibits proliferation of a panel of cervical cancer cell lines. It also induces apoptosis of cervical cancer cells in a time- and dose-dependent manner. In addition, the apoptosis induced by doxycycline is through caspase-dependent pathway. Mechanism studies demonstrate that doxycycline affects oxygen consumption rate, glycolysis, and reduces ATP levels in cervical cancer cells. In HeLa xenograft mouse model, doxycycline significantly inhibits growth of tumour. Our in vitro and in vivo data clearly demonstrate the inhibitory effects of doxycycline on the growth and survival of cervical cancer cells. Our work provides the evidence that doxycycline can be repurposed for the treatment of cervical cancer and targeting energy metabolism may represent a potential therapeutic strategy for cervical cancer.


2020 ◽  
Author(s):  
Chenglai Xia ◽  
Chang Liu ◽  
Zhihong He ◽  
Yantao Cai ◽  
Jinman Chen

Abstract Background:Recent studies have shown that the classic hypoglycemic drug metformin inhibits tumor growth; however, the underlying mechanism remains unclear. We previously showed that metformin disrupts the sponge effect of long non-coding RNA MALAT1/miR-142-3p to inhibit cervical cancer cell proliferation. In this study, we interrogated the ability of metformin to modulate the anti-tumor immune response in cervical cancer. Methods:The cell counting kit-8 assay was used to detect the viability of cervical cancer cells. Flow cytometry assays were performed to measure cell apoptosis and cell cycle. Lactate dehydrogenase (LDH) cytotoxicity assay was used to detect NK Cell Cytotoxicity. Relative protein levels were determined by immunoblotting and relative gene levels were determined by quantitative real-time PCR. Tumor Xenograft Modeling was used to evaluate the effect of metformin in vivo.Results: Metformin inhibited cervical cancer cell proliferation, cervical cancer xenograft growth, expression of PCNA, p-PI3K and p-Akt. Moreover metformin induced cervical cancer cell apoptosis and caused cancer cell cycle arrest. In addition, metformin upregulated the expression of DDR-1 and p53 in human cervical cancer cells. Furthermore, metformin also regulated the mRNA and protein expression of MICA and HSP70 on the surface of human cervical cancer cells via the PI3K/Akt pathway, enhancing NK cell cytotoxicity. Conclusions: In conclusion, our results suggest that metformin may be used as immunopotentiator to inhibit cervical cancer progression and may be considered a viable candidate for combination therapy with immunotherapy.


2020 ◽  
Author(s):  
Chenglai Xia ◽  
Chang Liu ◽  
Zhihong He ◽  
Yantao Cai ◽  
Jinman Chen

Abstract Background: Recent studies have shown that the classic hypoglycemic drug metformin inhibits tumor growth; however, the underlying mechanism remains unclear. We previously showed that metformin disrupts the sponge effect of long non-coding RNA MALAT1/miR-142-3p to inhibit cervical cancer cell proliferation. In this study, we interrogated the ability of metformin to modulate the anti-tumor immune response in cervical cancer. Methods:The cell counting kit-8 assay was used to detect the viability of cervical cancer cells. Flow cytometry assays were performed to measure cell apoptosis and cell cycle. Lactate dehydrogenase (LDH) cytotoxicity assay was used to detect NK Cell Cytotoxicity. Relative protein levels were determined by immunoblotting and relative gene levels were determined by quantitative real-time PCR. Tumor Xenograft Modeling was used to evaluate the effect of metformin in vivo.Results: Metformin inhibited cervical cancer cell proliferation, cervical cancer xenograft growth, expression of PCNA, p-PI3K and p-Akt. Moreover metformin induced cervical cancer cell apoptosis and caused cancer cell cycle arrest. In addition, metformin upregulated the expression of DDR-1 and p53 in human cervical cancer cells. Furthermore, metformin also regulated the mRNA and protein expression of MICA and HSP70 on the surface of human cervical cancer cells via the PI3K/Akt pathway, enhancing NK cell cytotoxicity. Conclusions: In conclusion, our results suggest that metformin may be used as immunopotentiator to inhibit cervical cancer progression and may be considered a viable candidate for combination therapy with immunotherapy.


Author(s):  
Li Li ◽  
Yijia Gong ◽  
Ke Xu ◽  
Weihong Chen ◽  
Jiuyi Xia ◽  
...  

Abstract Background Among the common preventable cancers of women, cervical cancer has the highest morbidity. It is curable if detected at an early stage. However, reliable diagnostic and prognostic markers, which relate to physiologic and pathologic regulation of cervical cancer, are not available. In this study, one such potential marker, ZBTB28, was evaluated for its potential usefulness in cervical cancer assessment. Methods Public database analysis, reverse-transcription polymerase chain reaction (PCR), and methylation-specific PCR were employed to analyze ZBTB28 expression and promoter methylation. The importance of ZBTB28 in cervical cancer cells was assessed by cellular and molecular analysis in vitro and in vivo. Results This study assessed the anti-tumor effects of the transcription factor, ZBTB28, which is often silenced in cervical cancer due to CpG methylation of its promoter. We found ZBTB28 to directly affect cervical cancer cell proliferation, apoptosis, autophagy, and tumorigenesis. Also, it increased cancer cell chemosensitivity to Paclitaxel, Cisplatin, and 5-fluorouracil. Ectopic ZBTB28 expression inhibited the growth of cervical cancer xenografts in nude mice. Furthermore, electron microscopy demonstrated ZBTB28 to induce autophagosomes in cervical cancer cells. ZBTB28 induced cellular autophagy by the degradation of Bcl-XL, reduction of the Bcl-XL-BECN1 complex, and by interaction with the autophagy-related gene FIP200. ZBTB28-induced autophagy of cervical cancer cells was shown to mediate cellular apoptosis through the regulation of FIP200. Conclusion These findings identify ZBTB28 as a tumor suppressor gene that can induce autophagy-related apoptosis in cervical cancer cells. As such, ZBTB28 may be a target for the treatment of uterine-cervical carcinoma. Further, ZBTB28 promoter methylation analysis may offer a new objective strategy for cervical cancer screening.


Sign in / Sign up

Export Citation Format

Share Document