scholarly journals Biotin-Containing Third Generation Glucoheptoamidated Polyamidoamine Dendrimer for 5-Aminolevulinic Acid Delivery System

2021 ◽  
Vol 22 (4) ◽  
pp. 1982 ◽  
Author(s):  
Aleksandra Kaczorowska ◽  
Małgorzata Malinga-Drozd ◽  
Wojciech Kałas ◽  
Marta Kopaczyńska ◽  
Stanisław Wołowiec ◽  
...  

Polyamidoamine PAMAM dendrimer generation 3 (G3) was modified by attachment of biotin via amide bond and glucoheptoamidated by addition of α-D-glucoheptono-1,4-lacton to obtain a series of conjugates with a variable number of biotin residues. The composition of conjugates was determined by detailed 1-D and 2-D NMR spectroscopy to reveal the number of biotin residues, which were 1, 2, 4, 6, or 8, while the number of glucoheptoamide residues substituted most of the remaining primary amine groups of PAMAM G3. The conjugates were then used as host molecules to encapsulate the 5-aminolevulinic acid. The solubility of 5-aminolevulinic acid increased twice in the presence of the 5-mM guest in water. The interaction between host and guest was accompanied by deprotonation of the carboxylic group of 5-aminolevulinic acid and proton transfer into internal ternary nitrogen atoms of the guest as evidenced by a characteristic chemical shift of resonances in the 1H NMR spectrum of associates. The guest molecules were most likely encapsulated inside inner shell voids of the host. The number of guest molecules depended on the number of biotin residues of the host, which was 15 for non-biotin-containing glucoheptoamidated G3 down to 6 for glucoheptoamidated G3 with 8 biotin residues on the host surface. The encapsulates were not cytotoxic against Caco-2 cells up to 200-µM concentration in the dark. All encapsulates were able to deliver 5-aminolevulinic acid to cells but aqueous encapsulates were more active in this regard. Simultaneously, the reactive oxygen species were detected by staining with H2DCFDA in Caco-2 cells incubated with encapsulates. The amount of PpIX was sufficient for induction of reactive oxygen species upon 30-s illumination with a 655-nm laser beam.

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi37-vi37
Author(s):  
Gabrielle Price ◽  
Daniel Rivera ◽  
Alexandros Bouras ◽  
Constantinos Hadjipanayis

Abstract Diffuse midline gliomas (DMGs) are highly invasive, unresectable tumors in children. To date, there is no effective treatment for DMGs. Fractionated radiotherapy (RT), currently the standard of care, has provided limited disease control. Current obstacles to treatment include the blood brain barrier (BBB) that limits systemic drug delivery, tumor therapy resistance, and brainstem infiltration. Given the unmet need for more effective DMG treatments, photodynamic therapy (PDT), with the precursor photosensitizing agent 5-aminolevulinic acid (5-ALA), is an oncologic treatment that holds promise. 5-ALA PDT of tumors occurs by targeting tumor cells that accumulate the 5-ALA metabolite, protoporphyrin IX (PPIX), with 635 nm light to create deadly reactive oxygen species (ROS). We explore the synergism of 5-ALA PDT with the MEK inhibitor, trametinib, since the RAS/MEK signaling pathway regulates tumor cell proliferation and survival and has been shown to therapeutically enhance PDT in select tumor models. We demonstrated that sub-micromolar levels of 5-ALA PDT and nanomolar levels of trametinib successfully decrease cell proliferation and induce apoptosis in multiple DMG cell lines. Cell viability assays revealed that drug response differs based on the histone mutation (H3.1 or H3.3) of the line. Mechanisms of decreased cell survival involves the generation of reactive oxygen species that induces programmed cell death. Through the use of a DMG genetically engineered mouse model, we also found 5-ALA PDT to induce apoptosis in vivo. The synergistic effects of MEK inhibition and 5-ALA PDT in vitro and apoptotic effects of 5-ALA PDT in vivo, highlights the potential therapeutic efficacy of this treatment modality.


2015 ◽  
Vol 12 (3) ◽  
pp. 360-361
Author(s):  
Hirofumi Matsui ◽  
Hiromu Ito ◽  
Masato Tamura ◽  
Tsuyoshi Kaneko ◽  
Hiroko P. Indo ◽  
...  

Nanomedicine ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 221-235 ◽  
Author(s):  
Ying-kai Tao ◽  
Xiao-yang Hou ◽  
Huan Gao ◽  
Xin Zhang ◽  
Feng-mei Zuo ◽  
...  

Background: The hypoxia of the tumor microenvironment (TME), low transfer efficiency of photosensitizers and limited diffusion distance of reactive oxygen species restrict the application of photodynamic therapy (PDT). Aim: To produce TME-responsive and effective nanoparticles for sensitizing PDT. Materials & methods: CD44 and mitochondria grade-targeted hyaluronic acid (HA)-triphenylphosphine (TPP)-aminolevulinic acid (ALA)-catalase (CAT) nanoparticles (HTACNPs) were synthesized via a modified double-emulsion method. In vitro and in vivo experiments were performed to investigate the antitumor efficacy of HTACNP-mediated PDT. Results: HTACNPs specifically targeted MV3 cells and the mitochondria and produced O2 to relieve TME hypoxia. HTACNP-mediated PDT produced reactive oxygen species to induce irreversible cell apoptosis. HTACNP-PDT inhibited melanoma growth effectively in vivo. Conclusion: HTACNP-mediated PDT improved TME hypoxia and effectively enhanced PDT for cancer.


2017 ◽  
Vol 16 (11) ◽  
pp. 1623-1630 ◽  
Author(s):  
Wei Zhu ◽  
Ying-Hua Gao ◽  
Chun-Hong Song ◽  
Zhi-Bin Lu ◽  
Tabbisa Namulinda ◽  
...  

Upon light activation, 13a can induce the production of PpIX in vivo which produces ROS and other reactive oxygen species to lead to the apoptosis of S180 cell tumors.


Sign in / Sign up

Export Citation Format

Share Document