scholarly journals The Self-Assembly and Design of Polyfunctional Nanosystems

2021 ◽  
Vol 22 (4) ◽  
pp. 2223
Author(s):  
Ruslan Kashapov ◽  
Lucia Zakharova

The current task of the molecular sciences is to create unique nanostructured materials with a given structure and with specific physicochemical properties on the basis of the existing wide range of molecules of natural and synthetic origin. A promising and inexpensive way to obtain nanostructured materials is the spontaneous self-assembly of molecular building blocks during random collisions in real dispersive systems in solution and at interfaces. This editorial aims to summarize the major points from the 11 scientific papers that contributed to the special issue “The Self-Assembly and Design of Polyfunctional Nanosystems”, assessing the modern self-assembly potential and strategies for maintaining sustainable development of the nanoindustry.

2021 ◽  
Vol 22 (17) ◽  
pp. 9634
Author(s):  
Moran Aviv ◽  
Dana Cohen-Gerassi ◽  
Asuka A. Orr ◽  
Rajkumar Misra ◽  
Zohar A. Arnon ◽  
...  

Supramolecular hydrogels formed by the self-assembly of amino-acid based gelators are receiving increasing attention from the fields of biomedicine and material science. Self-assembled systems exhibit well-ordered functional architectures and unique physicochemical properties. However, the control over the kinetics and mechanical properties of the end-products remains puzzling. A minimal alteration of the chemical environment could cause a significant impact. In this context, we report the effects of modifying the position of a single atom on the properties and kinetics of the self-assembly process. A combination of experimental and computational methods, used to investigate double-fluorinated Fmoc-Phe derivatives, Fmoc-3,4F-Phe and Fmoc-3,5F-Phe, reveals the unique effects of modifying the position of a single fluorine on the self-assembly process, and the physical properties of the product. The presence of significant physical and morphological differences between the two derivatives was verified by molecular-dynamics simulations. Analysis of the spontaneous phase-transition of both building blocks, as well as crystal X-ray diffraction to determine the molecular structure of Fmoc-3,4F-Phe, are in good agreement with known changes in the Phe fluorination pattern and highlight the effect of a single atom position on the self-assembly process. These findings prove that fluorination is an effective strategy to influence supramolecular organization on the nanoscale. Moreover, we believe that a deep understanding of the self-assembly process may provide fundamental insights that will facilitate the development of optimal amino-acid-based low-molecular-weight hydrogelators for a wide range of applications.


2009 ◽  
Vol 13 (04n05) ◽  
pp. 461-470 ◽  
Author(s):  
Joaquim Crusats ◽  
Zoubir El-Hachemi ◽  
Carlos Escudero ◽  
Josep M. Ribó

The formation and structure of the title aggregates are paradigms of the self-assembly of amphiphilic molecular building blocks in supramolecular chemistry. This review summarizes the research in the University of Barcelona on the homoassociation of the water soluble meso 4-sulfonatophenyl-and phenyl substituted porphyrins.


2015 ◽  
Vol 6 ◽  
pp. 1432-1438 ◽  
Author(s):  
Rina Kumari ◽  
Shib Shankar Banerjee ◽  
Anil K Bhowmick ◽  
Prolay Das

Single-stranded DNA–melamine hybrid molecular building blocks were synthesized using a phosphoramidation cross-coupling reaction with a zero linker approach. The self-assembly of the DNA–organic hybrid molecules was achieved by DNA hybridization. Following self-assembly, two distinct types of nanostructures in the form of linear chains and network arrays were observed. The morphology of the self-assembled nanostructures was found to depend on the number of DNA strands that were attached to a single melamine molecule.


2021 ◽  
Author(s):  
Jie Xiao ◽  
Qun He ◽  
Minjun Yang ◽  
Haoquan Li ◽  
Xiandeng Qiu ◽  
...  

The self-assembly of amphiphilic miktoarm star copolymers shows hierarchical pathway complexity from molecular building blocks to miktoarm stars to micellar nano-objects to complex hierarchical assemblies.


2022 ◽  
Author(s):  
Ruiqi Liang ◽  
Yazhen Xue ◽  
Xiaowei Fu ◽  
An Le ◽  
Qingliang Song ◽  
...  

The inability to synthesize hierarchical structures with independently tailored nanoscale and mesoscale features limits the discovery of next-generation multifunctional materials. We present a programmable molecular self-assembly strategy to craft nanostructured materials with a variety of phase-in-phase hierarchical morphologies. The compositionally anisotropic building blocks employed in the assembly process are formed by multi-component graft block copolymers (GBCPs) containing sequence-defined side chains. The judicious design of various structural parameters in the GBCPs enables broadly tunable compositions, morphologies, and lattice parameters across the nanoscale and mesoscale in the assembled structures. Our strategy introduces new design principles for the efficient creation of complex hierarchical structures and provides a facile synthetic platform to access nanomaterials with multiple precisely integrated functionalities.


2016 ◽  
Vol 7 ◽  
pp. 1219-1228 ◽  
Author(s):  
Serene S Bayram ◽  
Klas Lindfors ◽  
Amy Szuchmacher Blum

Nanostructured materials with tunable properties are of great interest for a wide range of applications. The self-assembly of simple nanoparticle building blocks could provide an inexpensive means to achieve this goal. Here, we generate extended anisotropic silver nanoparticle assemblies in solution using controlled amounts of one of three inexpensive, widely available, and environmentally benign short ditopic ligands: cysteamine, dithiothreitol and cysteine in aqueous solution. The self-assembly of our extended structures is enforced by hydrogen bonding. Varying the ligand concentration modulates the extent and density of these unprecedented anisotropic structures. Our results show a correlation between the chain nature of the assembly and the generation of spectral anisotropy. Deuterating the ligand further enhances the anisotropic signal by triggering more compact aggregates and reveals the importance of solvent interactions in assembly size and morphology. Spectral and morphological evolutions of the AgNPs assemblies are followed via UV–visible spectroscopy and transmission electron microscopy (TEM). Spectroscopic measurements are compared to calculations of the absorption spectra of randomly assembled silver chains and aggregates based on the discrete dipole approximation. The models support the experimental findings and reveal the importance of aggregate size and shape as well as particle polarizability in the plasmon coupling between nanoparticles.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 524 ◽  
Author(s):  
Atsushi Shimojima ◽  
Kazuyuki Kuroda

Siloxane-based materials have a wide range of applications. Cage-type oligosiloxanes have attracted significant attention as molecular building blocks to construct novel siloxane-based nanoporous materials with promising applications such as in catalysis and adsorption. This paper reviews recent progress in the preparation of siloxane-based nanoporous materials using alkoxy- and silanol-functionalized cage siloxanes. The arrangement of cage siloxanes units is controlled by various methods, including amphiphilic self-assembly, hydrogen bonding of silanol groups, and regioselective functionalization, toward the preparation of ordered nanoporous siloxane-based materials.


2020 ◽  
Vol 4 (1) ◽  
pp. 35
Author(s):  
Carolina Amorim ◽  
Peter J. Jervis ◽  
Juliana Andrade ◽  
Paula M. T. Ferreira ◽  
José A. Martins

The self-assembly of nanometric structures from molecular building blocks is an effectiveway to make new functional materials for biological and technological applications. [...]


Sign in / Sign up

Export Citation Format

Share Document