scholarly journals Members of the Fibroblast Growth Factor Receptor Superfamily Are Proteolytically Cleaved by Two Differently Activated Metalloproteases

2021 ◽  
Vol 22 (6) ◽  
pp. 3165
Author(s):  
Garima Dixit ◽  
Willow Schanz ◽  
Benjamin A. Pappas ◽  
Thorsten Maretzky

Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases that have been associated not only with various cellular processes, such as embryonic development and adult wound healing but also enhanced tumor survival, angiogenesis, and metastatic spread. Proteolytic cleavage of these single-pass transmembrane receptors has been suggested to regulate biological activities of their ligands during growth and development, yet little is known about the proteases responsible for this process. In this study, we monitored the release of membrane-anchored FGFRs 1, 2, 3, and 4 in cell-based assays. We demonstrate here that metalloprotease-dependent metalloprotease family, ADAM10 and ADAM17. Loss- and gain-of-function studies in murine embryonic fibroblasts showed that constitutive shedding as well as phorbol-ester-induced processing of FGFRs 1, 3, and 4 is mediated by ADAM17. In contrast, treatment with the calcium ionophore ionomycin stimulated ADAM10-mediated FGFR2 shedding. Cell migration assays with keratinocytes in the presence or absence of soluble FGFRs suggest that ectodomain shedding can modulate the function of ligand-induced FGFR signaling during cell movement. Our data identify ADAM10 and ADAM17 as differentially regulated FGFR membrane sheddases and may therefore provide new insight into the regulation of FGFR functions.

Blood ◽  
2007 ◽  
Vol 110 (12) ◽  
pp. 4111-4119 ◽  
Author(s):  
Linlin Wang ◽  
Thomas C. Schulz ◽  
Eric S. Sherrer ◽  
Derek S. Dauphin ◽  
Soojung Shin ◽  
...  

Abstract Despite progress in developing defined conditions for human embryonic stem cell (hESC) cultures, little is known about the cell-surface receptors that are activated under conditions supportive of hESC self-renewal. A simultaneous interrogation of 42 receptor tyrosine kinases (RTKs) in hESCs following stimulation with mouse embryonic fibroblast (MEF) conditioned medium (CM) revealed rapid and prominent tyrosine phosphorylation of insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R); less prominent tyrosine phosphorylation of epidermal growth factor receptor (EGFR) family members, including ERBB2 and ERBB3; and trace phosphorylation of fibroblast growth factor receptors. Intense IGF1R and IR phosphorylation occurred in the absence of MEF conditioning (NCM) and was attributable to high concentrations of insulin in the proprietary KnockOut Serum Replacer (KSR). Inhibition of IGF1R using a blocking antibody or lentivirus-delivered shRNA reduced hESC self-renewal and promoted differentiation, while disruption of ERBB2 signaling with the selective inhibitor AG825 severely inhibited hESC proliferation and promoted apoptosis. A simple defined medium containing an IGF1 analog, heregulin-1β (a ligand for ERBB2/ERBB3), fibroblast growth factor-2 (FGF2), and activin A supported long-term growth of multiple hESC lines. These studies identify previously unappreciated RTKs that support hESC proliferation and self-renewal, and provide a rationally designed medium for the growth and maintenance of pluripotent hESCs.


Tumor Biology ◽  
2017 ◽  
Vol 39 (5) ◽  
pp. 101042831769837 ◽  
Author(s):  
Shuwei Wang ◽  
Zhongyang Ding

Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.


2009 ◽  
Vol 20 (1) ◽  
pp. 124-133 ◽  
Author(s):  
Hyun-Shik Lee ◽  
Kathleen Mood ◽  
Gopala Battu ◽  
Yon Ju Ji ◽  
Arvinder Singh ◽  
...  

The Eph family of receptor tyrosine kinases and their membrane-bound ligands, the ephrins, have been implicated in regulating cell adhesion and migration during development by mediating cell-to-cell signaling events. The transmembrane ephrinB1 protein is a bidirectional signaling molecule that signals through its cytoplasmic domain to promote cellular movements into the eye field, whereas activation of the fibroblast growth factor receptor (FGFR) represses these movements and retinal fate. In Xenopus embryos, ephrinB1 plays a role in retinal progenitor cell movement into the eye field through an interaction with the scaffold protein Dishevelled (Dsh). However, the mechanism by which the FGFR may regulate this cell movement is unknown. Here, we present evidence that FGFR-induced repression of retinal fate is dependent upon phosphorylation within the intracellular domain of ephrinB1. We demonstrate that phosphorylation of tyrosines 324 and 325 disrupts the ephrinB1/Dsh interaction, thus modulating retinal progenitor movement that is dependent on the planar cell polarity pathway. These results provide mechanistic insight into how fibroblast growth factor signaling modulates ephrinB1 control of retinal progenitor movement within the eye field.


Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 715 ◽  
Author(s):  
Ana Jimenez-Pascual ◽  
Florian A. Siebzehnrubl

Glioblastoma is the most lethal brain cancer in adults, with no known cure. This cancer is characterized by a pronounced genetic heterogeneity, but aberrant activation of receptor tyrosine kinase signaling is among the most frequent molecular alterations in glioblastoma. Somatic mutations of fibroblast growth factor receptors (FGFRs) are rare in these cancers, but many studies have documented that signaling through FGFRs impacts glioblastoma progression and patient survival. Small-molecule inhibitors of FGFR tyrosine kinases are currently being trialed, underlining the therapeutic potential of blocking this signaling pathway. Nevertheless, a comprehensive overview of the state of the art of the literature on FGFRs in glioblastoma is lacking. Here, we review the evidence for the biological functions of FGFRs in glioblastoma, as well as pharmacological approaches to targeting these receptors.


Cells ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 76 ◽  
Author(s):  
Navid Sobhani ◽  
Anna Ianza ◽  
Alberto D’Angelo ◽  
Giandomenico Roviello ◽  
Fabiola Giudici ◽  
...  

Breast cancer (BC) is the most common malignancy and second only to lung cancer in terms of mortality in women. Despite the incredible progress made in this field, metastatic breast cancer has a poor prognosis. In an era of personalized medicine, there is an urgent need for better knowledge of the biology leading to the disease, which can lead to the design of increasingly accurate drugs against patients’ specific molecular aberrations. Among one of the actionable targets is the fibroblast growth factor receptor (FGFR) pathway, triggered by specific ligands. The Fibroblast Growth Factor Receptors/Fibroblast Growth Factors (FGFRs/FGFs) axis offers interesting molecular targets to be pursued in clinical development. This mini-review will focus on the current knowledge of FGFR mutations, which lead to tumor formation and summarizes the state-of-the-art therapeutic strategies for targeted treatments against the FGFRs/FGFs axis in the context of BC.


1994 ◽  
Vol 14 (11) ◽  
pp. 7660-7669
Author(s):  
Y Li ◽  
C Basilico ◽  
A Mansukhani

Ligand-induced dimerization and transphosphorylation are thought to be important events by which receptor tyrosine kinases generate cellular signals. We have investigated the ability of signalling-defective, truncated fibroblast growth factor (FGF) receptors (FGFR-1 and FGFR-2) to block the FGF response in cells that express both types of endogenous FGF receptors. When these dominant negative receptors are expressed in NIH 3T3 cells transformed by the secreted FGF-4, the transformed properties of the cells can be reverted to various degrees, with better reversion phenotype correlating with higher levels of truncated receptor expression. Furthermore, truncated FGFR-2 is significantly more efficient at producing reversion than FGFR-1, indicating that FGF-4 preferentially utilizes the FGFR-2 signalling pathway. NIH 3T3 clones expressing these truncated receptors are more resistant to FGF-induced mitogenesis and also exhibit reduced tyrosine phosphorylation upon treatment with FGF. The block in FGF-signalling, however, can be overcome by the addition of excess growth factor. The truncated receptors have binding affinities that are four- to eightfold lower than those of wild-type receptors, as measured by Scatchard analysis. We also observed a partial specificity in the responses of truncated-receptor-expressing clones to FGF-2 or FGF-4. Our results suggest that the block to signal transduction produced by kinase-negative FGF receptors is achieved through a combination of dominant negative effects and competition for growth factor binding with functional receptors.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1274
Author(s):  
Matthew R. Jones ◽  
Arun Lingampally ◽  
Jin Wu ◽  
Jamschid Sedighi ◽  
Negah Ahmadvand ◽  
...  

Branching morphogenesis is the basic developmental mode common to organs such as the lungs that undergo a process of ramification from a rudimentary tree. However, the precise molecular and cellular bases underlying the formation of branching organs are still unclear. As inactivation of fibroblast growth factor receptor 2b (Fgfr2b) signaling during early development leads to lung agenesis, thereby preventing the analysis of this pathway at later developmental stages, we used transgenic mice to induce expression of a soluble form of Fgfr2b to inactivate Fgfr2b ligands at embryonic day (E) 14.5, corresponding to the mid-pseudoglandular stage of lung development. We identified an Fgfr2b signaling signature comprised of 46 genes enriched in the epithelium, some of which were common to, but most of them distinct from, the previously identified Fgfr2b signaling signature at E12.5. Our results indicate that Fgfr2b signaling at E14.5 controls mostly proliferation and alveolar type 2 cell (AT2) differentiation. In addition, inhibition of Fgfr2b signaling at E14.5 leads to morphological and cellular impairment at E18.5, with defective alveolar lineage formation. Further studies will have to be conducted to elucidate the role of Fgfr2b signaling at successive stages (canalicular/saccular/alveolar) of lung development as well as during homeostasis and regeneration and repair after injury.


2000 ◽  
Vol 20 (2) ◽  
pp. 724-734 ◽  
Author(s):  
Lisa D. Chong ◽  
Eui Kyun Park ◽  
Erin Latimer ◽  
Robert Friesel ◽  
Ira O. Daar

ABSTRACT The Eph family of receptor tyrosine kinases and their membrane-bound ligands, the ephrins, have been implicated in regulating cell adhesion and migration during development by mediating cell-to-cell signaling events. Genetic evidence suggests that ephrins may transduce signals and become tyrosine phosphorylated during embryogenesis. However, the induction and functional significance of ephrin phosphorylation is not yet clear. Here, we report that when we used ectopically expressed proteins, we found that an activated fibroblast growth factor (FGF) receptor associated with and induced the phosphorylation of ephrin B1 on tyrosine. Moreover, this phosphorylation reduced the ability of overexpressed ephrin B1 to reduce cell adhesion. In addition, we identified a region in the cytoplasmic tail of ephrin B1 that is critical for interaction with the FGF receptor; we also report FGF-induced phosphorylation of ephrins in a neural tissue. This is the first demonstration of communication between the FGF receptor family and the Eph ligand family and implicates cross talk between these two cell surface molecules in regulating cell adhesion.


1994 ◽  
Vol 14 (11) ◽  
pp. 7660-7669 ◽  
Author(s):  
Y Li ◽  
C Basilico ◽  
A Mansukhani

Ligand-induced dimerization and transphosphorylation are thought to be important events by which receptor tyrosine kinases generate cellular signals. We have investigated the ability of signalling-defective, truncated fibroblast growth factor (FGF) receptors (FGFR-1 and FGFR-2) to block the FGF response in cells that express both types of endogenous FGF receptors. When these dominant negative receptors are expressed in NIH 3T3 cells transformed by the secreted FGF-4, the transformed properties of the cells can be reverted to various degrees, with better reversion phenotype correlating with higher levels of truncated receptor expression. Furthermore, truncated FGFR-2 is significantly more efficient at producing reversion than FGFR-1, indicating that FGF-4 preferentially utilizes the FGFR-2 signalling pathway. NIH 3T3 clones expressing these truncated receptors are more resistant to FGF-induced mitogenesis and also exhibit reduced tyrosine phosphorylation upon treatment with FGF. The block in FGF-signalling, however, can be overcome by the addition of excess growth factor. The truncated receptors have binding affinities that are four- to eightfold lower than those of wild-type receptors, as measured by Scatchard analysis. We also observed a partial specificity in the responses of truncated-receptor-expressing clones to FGF-2 or FGF-4. Our results suggest that the block to signal transduction produced by kinase-negative FGF receptors is achieved through a combination of dominant negative effects and competition for growth factor binding with functional receptors.


Sign in / Sign up

Export Citation Format

Share Document