scholarly journals High Mobility Group Box 1 Promotes Lung Cancer Cell Migration and Motility via Regulation of Dynamin-Related Protein 1

2021 ◽  
Vol 22 (7) ◽  
pp. 3628
Author(s):  
Wei-Lun Liu ◽  
Chia-Yang Li ◽  
Wei-Chung Cheng ◽  
Chia-Yuan Chang ◽  
Yung-Hsiang Chen ◽  
...  

High mobility group box 1 (HMGB1) has been demonstrated to promote the migration and invasion of non-small cell lung cancer (NSCLC). However, the mechanism of action of HMGB1 in regulating tumor mobility remains unclear. Therefore, we aimed to investigate whether HMGB1 affects mitochondria distribution and regulates dynamin-related protein 1 (DRP1)-mediated lamellipodia/filopodia formation to promote NSCLC migration. The regulation of mitochondrial membrane tension, dynamics, polarization, fission process, and cytoskeletal rearrangements in lung cancer cells by HMGB1 was analyzed using confocal microscopy. The HMGB1-mediated regulation of DRP1 phosphorylation and colocalization was determined using immunostaining and co-immunoprecipitation assays. The tumorigenic potential of HMGB1 was assessed in vivo and further confirmed using NSCLC patient samples. Our results showed that HMGB1 increased the polarity and mobility of cells (mainly by regulating the cytoskeletal system actin and microtubule dynamics and distribution), promoted the formation of lamellipodia/filopodia, and enhanced the expression and phosphorylation of DRP1 in both the nucleus and cytoplasm. In addition, HMGB1 and DRP1 expressions were positively correlated and exhibited poor prognosis and survival in patients with lung cancer. Collectively, HMGB1 plays a key role in the formation of lamellipodia and filopodia by regulating cytoskeleton dynamics and DRP1 expression to promote lung cancer migration.

2020 ◽  
Vol 401 (10) ◽  
pp. 1191-1198 ◽  
Author(s):  
Yunjing Li ◽  
Yongfu Ma ◽  
Tong Zhang ◽  
Changjiang Feng ◽  
Yang Liu

AbstractIt has been reported that high-mobility group box 3 is overexpressed in various cancers. This study aimed to explore its function in non-small cell lung cancer (NSCLC). A546 and H460 cell lines were used for in vivo experiments, scratch healing tests, transwell migration and invasion experiments. It was first found that HMGB3 was highly expressed in tumor tissues in the patients and associated with NSCLC stage. Silencing of HMGB3 significantly slowed the growth, proliferation and invasion of NSCLC in vitro, and repressed cell growth in vivo. Mechanistic studies suggest that the observed effects were mediated by inhibiting the expression of β-catenin/MMP7/c-Myc in Wnt pathway. Our study highlights the role of HMGB3 in NSCLC, which may provide a therapeutic target for the treatment of NSCLC.


Author(s):  
Jiongwei Pan ◽  
Gang Huang ◽  
Zhangyong Yin ◽  
Xiaoping Cai ◽  
Enhui Gong ◽  
...  

AbstractSignificantly high-expressed circFLNA has been found in various cancer cell lines, but not in lung cancer. Therefore, this study aimed to explore the role of circFLNA in the progression of lung cancer. The target gene of circFLNA was determined by bioinformatics and luciferase reporter assay. Viability, proliferation, migration, and invasion of the transfected cells were detected by CCK-8, colony formation, wound-healing, and transwell assays, respectively. A mouse subcutaneous xenotransplanted tumor model was established, and the expressions of circFLNA, miR-486-3p, XRCC1, CYP1A1, and related genes in the cancer cells and tissues were detected by RT-qPCR, Western blot, or immunohistochemistry. The current study found that miR-486-3p was low-expressed in lung cancer. MiR-486-3p, which has been found to target XRCC1 and CYP1A1, was regulated by circFLNA. CircFLNA was located in the cytoplasm and had a high expression in lung cancer cells. Cancer cell viability, proliferation, migration, and invasion were promoted by overexpressed circFLNA, XRCC1, and CYP1A1 but inhibited by miR-486-3p mimic and circFLNA knockdown. The weight of the xenotransplanted tumor was increased by circFLNA overexpression yet reduced by miR-486-3p mimic. Furthermore, miR-486-3p mimic reversed the effect of circFLNA overexpression on promoting lung cancer cells and tumors and regulating the expressions of miR-486-3p, XRCC1, CYP1A1, and metastasis/apoptosis/proliferation-related factors. However, overexpressed XRCC1 and CYP1A1 reversed the inhibitory effect of miR-486-3p mimic on cancer cells and tumors. In conclusion, circFLNA acted as a sponge of miR-486-3p to promote the proliferation, migration, and invasion of lung cancer cells in vitro and in vivo by regulating XRCC1 and CYP1A1.


2021 ◽  
pp. 1-16
Author(s):  
Yang Wang ◽  
Bo He ◽  
Yan Dong ◽  
Gong-Jin He ◽  
Xiao-Wei Qi ◽  
...  

BACKGROUND: The prognosis of lung cancer patients is poor without useful prognostic and diagnostic biomarker. To search for novel prognostic and diagnostic markers, we previously found homeobox-A13 (HOXA13) as a promising candidate in lung cancer. OBJECTIVE: To determine the precisely clinical feature, prognostic and diagnostic value, possible role and mechanism of HOXA13. METHODS: Gene-expression was explored by real-time quantitative-PCR, western-blot and tissue-microarray. The associations were analyzed by Chi-square test, Kaplan-Meier and Cox-regression. The roles and mechanisms were evaluated by MTS, EdU, transwell, xenograft tumor and luciferase-reporter assays. RESULTS: HOXA13 expression is increased in tumors, and correlated with age of patients. HOXA13 expression is associated with unfavorable overall survival and relapse-free survival of patients in four cohorts. Interestingly, HOXA13 has different prognostic significance in adenocarcinoma (ADC) and squamous-cell carcinoma (SCC), and is a sex- and smoke-related prognostic factor only in ADC. Importantly, HOXA13 can serve as a diagnostic biomarker for lung cancer, especially for SCC. HOXA13 can promote cancer-cell proliferation, migration and invasion in vitro, and facilitate tumorigenicity and tumor metastasis in vivo. HOXA13 acts the oncogenic roles on tumor growth and metastasis by regulating P53 and Wnt/β-catenin signaling activities in lung cancer. CONCLUSIONS: HOXA13 is a new prognostic and diagnostic biomarker associated with P53 and Wnt/β-catenin signaling pathways.


2018 ◽  
Vol 21 (3) ◽  
pp. 547-555 ◽  
Author(s):  
Xiangjun Guo ◽  
Jiaxin Shi ◽  
Yan Wen ◽  
Mengmeng Li ◽  
Qin Li ◽  
...  

2005 ◽  
Vol 19 (7) ◽  
pp. 1884-1892 ◽  
Author(s):  
Helena Sim ◽  
Kieran Rimmer ◽  
Sabine Kelly ◽  
Louisa M. Ludbrook ◽  
Andrew H. A. Clayton ◽  
...  

Abstract The sex-determining region of the Y chromosome (SRY) plays a key role in human sex determination, as mutations in SRY can cause XY sex reversal. Although some SRY missense mutations affect DNA binding and bending activities, it is unclear how others contribute to disease. The high mobility group domain of SRY has two nuclear localization signals (NLS). Sex-reversing mutations in the NLSs affect nuclear import in some patients, associated with defective importin-β binding to the C-terminal NLS (c-NLS), whereas in others, importin-β recognition is normal, suggesting the existence of an importin-β-independent nuclear import pathway. The SRY N-terminal NLS (n-NLS) binds calmodulin (CaM) in vitro, and here we show that this protein interaction is reduced in vivo by calmidazolium, a CaM antagonist. In calmidazolium-treated cells, the dramatic reduction in nuclear entry of SRY and an SRY-c-NLS mutant was not observed for two SRY-n-NLS mutants. Fluorescence spectroscopy studies reveal an unusual conformation of SRY.CaM complexes formed by the two n-NLS mutants. Thus, CaM may be involved directly in SRY nuclear import during gonadal development, and disruption of SRY.CaM recognition could underlie XY sex reversal. Given that the CaM-binding region of SRY is well-conserved among high mobility group box proteins, CaM-dependent nuclear import may underlie additional disease states.


Lung Cancer ◽  
2005 ◽  
Vol 49 ◽  
pp. S73-S74
Author(s):  
V. Sarhadi ◽  
H. Wikman ◽  
K. Salmenkivi ◽  
E. Kuosma ◽  
T. Sioris ◽  
...  

2019 ◽  
Author(s):  
Zongli Ding ◽  
Wenwen Du ◽  
Zhe Lei ◽  
Yang Zhang ◽  
Jianjie Zhu ◽  
...  

Abstract Background: TGF-β1 signaling is a potent inducer of epithelial-mesenchymal transition (EMT) in various cancers. Our previous study has indicated that NRP1 was significantly up-regulated and acted as a vital promoter in the metastasis of non-small cell lung cancer (NSCLC). However, the function of NRP1 in regulation of TGF-β1-induced EMT and NSCLC cell migration and invasion remained unclear. Methods: The differential expression level of NRP1 was determined by RT-PCR analysis in human tissue samples with or without lymph node metastasis. Transwell assay and wound healing assay were conducted to determine cell ability of migration. Lentivirus-mediated stable knockdown and overexpression of NRP1 cell lines were constructed. Exogenous TGF-β1 stimulation, SIS3 treatment, western blot analysis and in vivo metastatic model were utilized to clarify the underlying regulatory mechanism. Results: Increased expression of NRP1 was found in metastatic NSCLC tissues and can promote NSCLC metastasis in vivo. Transwell assays, wound healing assay and western blot analysis showed that knockdown of NRP1 significantly inhibited TGF-β1-mediated EMT and migratory and invasive capabilities of A549 and H226 cells. Furthermore, overexpression of NRP1 could weak the decreased migratory and invasive capabilities with SIS3 treatment. Co-IP data showed that NRP1 can interact with TGFβRⅡ to induce EMT. Conclusion: This is the first time to report that NRP1 can modulate TGF-β1-induced EMT and cell migration and invasion in NSCLC.


Author(s):  
Haiping Xiao

Abstract Background Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality worldwide. Distant metastasis is thought to be one of the most important factors responsible for the failure of NSCLC therapy. MicroRNA-7-5p (miR-7-5p) has been demonstrated to be a tumor suppressor in breast cancer, hepatocarcinoma, prostate cancer and glioblastoma multiforme (GBM). However, its role in NSCLC is still not fully understood. This study evaluated the role of miR-7-5p in the progression of NSCLC and explored the underlying mechanism. Materials & methods The quantitative real-time PCR (qPCR), MTT, migration and invasion assays were used to evaluate the effects of miR-7-5p on the proliferation, migration and invasion of A549 and SPCA-1 cells. A tumor xenograft model was created to determine the effects of miR-7-5p on metastasis in vivo. The dual-luciferase reporter gene, neuro-oncological ventral antigen 2 (NOVA2) overexpression and western blotting assays were performed to explore the underlying mechanism. Results MiR-7-5p is downregulated in NSCLC tissues and lung cancer cell lines. It suppresses proliferation, migration, invasion and EMT marker expression in vitro and in vivo. Further study showed that miR-7-5p suppresses tumor metastasis of NSCLC by targeting NOVA2. Overexpression of NOVA2 attenuates the miR-7-5p-mediated inhibitory effect on lung cancer cells. Conclusion MiR-7-5p suppresses NSCLC metastasis. Targeting miR-7-5p may contribute to the success of NSCLC therapy.


Sign in / Sign up

Export Citation Format

Share Document