scholarly journals Assessing the Role of Calmodulin’s Linker Flexibility in Target Binding

2021 ◽  
Vol 22 (9) ◽  
pp. 4990
Author(s):  
Bin Sun ◽  
Peter M. Kekenes-Huskey

Calmodulin (CaM) is a highly-expressed Ca2+ binding protein known to bind hundreds of protein targets. Its binding selectivity to many of these targets is partially attributed to the protein’s flexible alpha helical linker that connects its N- and C-domains. It is not well established how its linker mediates CaM’s binding to regulatory targets yet. Insights into this would be invaluable to understanding its regulation of diverse cellular signaling pathways. Therefore, we utilized Martini coarse-grained (CG) molecular dynamics simulations to probe CaM/target assembly for a model system: CaM binding to the calcineurin (CaN) regulatory domain. The simulations were conducted assuming a ‘wild-type’ calmodulin with normal flexibility of its linker, as well as a labile, highly-flexible linker variant to emulate structural changes that could be induced, for instance, by post-translational modifications. For the wild-type model, 98% of the 600 simulations across three ionic strengths adopted a bound complex within 2 μs of simulation time; of these, 1.7% sampled the fully-bound state observed in the experimentally-determined crystallographic structure. By calculating the mean-first-passage-time for these simulations, we estimated the association rate to be ka= 8.7 × 108 M−1 s−1, which is similar to the diffusion-limited, experimentally-determined rate of 2.2 × 108 M−1 s−1. Furthermore, our simulations recapitulated its well-known inverse relationship between the association rate and the solution ionic strength. In contrast, although over 97% of the labile linker simulations formed tightly-bound complexes, only 0.3% achieved the fully-bound configuration. This effect appears to stem from a difference in the ensembles of extended and collapsed states which are controlled by the linker flexibility. Therefore, our simulations suggest that variations in the CaM linker’s propensity for alpha helical secondary structure can modulate the kinetics of target binding.

2021 ◽  
Author(s):  
Bin Sun ◽  
Peter M Kekenes-Huskey

Calmodulin (CaM) is a universal calcium binding protein known to bind at least 300 targets. The selectivity and specificity towards these targets are partially attributed to the protein's flexible alpha-helical linker that connects its N- and C- domains. However, how this flexible linker mediates the driving forces guiding CaM's binding to regulatory targets is not well-established. Therefore, we utilized coarse-grained (CG) Martini molecular dynamics simulations to probe interrelationships between CaM/target assembly and the role of its linker region. As a model system, we simulated the binding of CaM to the CaM binding region (CaMBR) of calcineurin (CaN). The simulations were conducted assuming a 'wild-type' calmodulin with normal flexibility of its linker between the N- and C-terminal domains, as well as a labile, highly flexible linker variant. For the wild-type model, 98% of the 600 simulations across three ionic strengths adopted a tightly-bound complex within 2 μs of simulation time; of these, 1.7% sampled the fully-bound state observed in experimentally-determined crystallographic structure. By calculating the mean-first-passage-time for these simulations, we estimated the association rate to be ka =6.3×108 M −1 s−1, which is similar to the experimentally-determined rate of 2.2×108 M −1 s−1 (Cook et al 2020). Further, our simulations recapitulated the inverse relationship between the association rate and solution ionic strength reported in the literature. In contrast, although over 97% of the labile linker simulations formed tightly-bound complexes, only 0.3% achieved the fully-bound configuration and its ionic strength dependence is attenuated. These effects appear to stem from a difference in the ensembles of extended and collapsed states controlled by the linker properties. Specifically, the labile linker variant samples fewer extended states compatible with target peptide binding. Therefore, our simulations suggest that variations in the CaM linker's propensity for alpha-helical secondary structure can modulate the kinetics of target binding. This finding is important, given that some CaM variants found in the human population and post-translational modifications sites fall within this linker region, which may alter the protein's normal regulatory functions.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jules Nde ◽  
Pengzhi Zhang ◽  
Jacob C. Ezerski ◽  
Wei Lu ◽  
Kaitlin Knapp ◽  
...  

Calmodulin (CaM) is a calcium-binding protein that transduces signals to downstream proteins through target binding upon calcium binding in a time-dependent manner. Understanding the target binding process that tunes CaM’s affinity for the calcium ions (Ca2+), or vice versa, may provide insight into how Ca2+-CaM selects its target binding proteins. However, modeling of Ca2+-CaM in molecular simulations is challenging because of the gross structural changes in its central linker regions while the two lobes are relatively rigid due to tight binding of the Ca2+ to the calcium-binding loops where the loop forms a pentagonal bipyramidal coordination geometry with Ca2+. This feature that underlies the reciprocal relation between Ca2+ binding and target binding of CaM, however, has yet to be considered in the structural modeling. Here, we presented a coarse-grained model based on the Associative memory, Water mediated, Structure, and Energy Model (AWSEM) protein force field, to investigate the salient features of CaM. Particularly, we optimized the force field of CaM and that of Ca2+ ions by using its coordination chemistry in the calcium-binding loops to match with experimental observations. We presented a “community model” of CaM that is capable of sampling various conformations of CaM, incorporating various calcium-binding states, and carrying the memory of binding with various targets, which sets the foundation of the reciprocal relation of target binding and Ca2+ binding in future studies.


1980 ◽  
Vol 45 (3) ◽  
pp. 777-782 ◽  
Author(s):  
Milan Šolc

The establishment of chemical equilibrium in a system with a reversible first order reaction is characterized in terms of the distribution of first passage times for the state of exact chemical equilibrium. The mean first passage time of this state is a linear function of the logarithm of the total number of particles in the system. The equilibrium fluctuations of composition in the system are characterized by the distribution of the recurrence times for the state of exact chemical equilibrium. The mean recurrence time is inversely proportional to the square root of the total number of particles in the system.


Author(s):  
Natalie Packham ◽  
Lutz Schloegl ◽  
Wolfgang M. Schmidt

2021 ◽  
Vol 11 (15) ◽  
pp. 7118
Author(s):  
Ermina Hadzic ◽  
Garth Blackler ◽  
Holly Dupuis ◽  
Stephen James Renaud ◽  
Christopher Thomas Appleton ◽  
...  

Post-traumatic osteoarthritis (PTOA) is a degenerative joint disease, leading to articular cartilage breakdown, osteophyte formation, and synovitis, caused by an initial joint trauma. Pro-inflammatory cytokines increase catabolic activity and may perpetuate inflammation following joint trauma. Interleukin-15 (IL-15), a pro-inflammatory cytokine, is increased in OA patients, although its roles in PTOA pathophysiology are not well characterized. Here, we utilized Il15 deficient rats to examine the role of IL-15 in PTOA pathogenesis in an injury-induced model. OA was surgically induced in Il15 deficient Holtzman Sprague-Dawley rats and control wild-type rats to compare PTOA progression. Semi-quantitative scoring of the articular cartilage, subchondral bone, osteophyte size, and synovium was performed by two blinded observers. There was no significant difference between Il15 deficient rats and wild-type rats following PTOA-induction across articular cartilage damage, subchondral bone damage, and osteophyte scoring. Similarly, synovitis scoring across six parameters found no significant difference between genetic variants. Overall, IL-15 does not appear to play a key role in the development of structural changes in this surgically-induced rat model of PTOA.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 320
Author(s):  
Thaís Pereira da Silva ◽  
Fernando Jacomini de Castro ◽  
Larissa Vuitika ◽  
Nayanne Louise Costacurta Polli ◽  
Bruno César Antunes ◽  
...  

Phospholipases-D (PLDs) found in Loxosceles spiders’ venoms are responsible for the dermonecrosis triggered by envenomation. PLDs can also induce other local and systemic effects, such as massive inflammatory response, edema, and hemolysis. Recombinant PLDs reproduce all of the deleterious effects induced by Loxosceles whole venoms. Herein, wild type and mutant PLDs of two species involved in accidents—L. gaucho and L. laeta—were recombinantly expressed and characterized. The mutations are related to amino acid residues relevant for catalysis (H12-H47), magnesium ion coordination (E32-D34) and binding to phospholipid substrates (Y228 and Y228-Y229-W230). Circular dichroism and structural data demonstrated that the mutant isoforms did not undergo significant structural changes. Immunoassays showed that mutant PLDs exhibit conserved epitopes and kept their antigenic properties despite the mutations. Both in vitro (sphingomyelinase activity and hemolysis) and in vivo (capillary permeability, dermonecrotic activity, and histopathological analysis) assays showed that the PLDs with mutations H12-H47, E32-D34, and Y228-Y229-W230 displayed only residual activities. Results indicate that these mutant toxins are suitable for use as antigens to obtain neutralizing antisera with enhanced properties since they will be based on the most deleterious toxins in the venom and without causing severe harmful effects to the animals in which these sera are produced.


Sign in / Sign up

Export Citation Format

Share Document