scholarly journals Plant RNA Binding Proteins as Critical Modulators in Drought, High Salinity, Heat, and Cold Stress Responses: An Updated Overview

2021 ◽  
Vol 22 (13) ◽  
pp. 6731
Author(s):  
Muthusamy Muthusamy ◽  
Jong-Hee Kim ◽  
Jin A Kim ◽  
Soo-In Lee

Plant abiotic stress responses are tightly regulated by different players at multiple levels. At transcriptional or post-transcriptional levels, several RNA binding proteins (RBPs) regulate stress response genes through RNA metabolism. They are increasingly recognized as critical modulators of a myriad of biological processes, including stress responses. Plant RBPs are heterogeneous with one or more conservative RNA motifs that constitute canonical/novel RNA binding domains (RBDs), which can bind to target RNAs to determine their regulation as per the plant requirements at given environmental conditions. Given its biological significance and possible consideration as a potential tool in genetic manipulation programs to improve key agronomic traits amidst frequent episodes of climate anomalies, studies concerning the identification and functional characterization of RBP candidate genes are steadily mounting. This paper presents a comprehensive overview of canonical and novel RBPs and their functions in major abiotic stresses including drought, heat, salt, and cold stress conditions. To some extent, we also briefly describe the basic motif structure of RBPs that would be useful in forthcoming studies. Additionally, we also collected RBP genes that were modulated by stress, but that lacked functional characterization, providing an impetus to conduct further research.

2021 ◽  
Author(s):  
Scott I Adamson ◽  
Lijun Zhan ◽  
Brenton R Graveley

Background: RNA binding protein-RNA interactions mediate a variety of processes including pre-mRNA splicing, translation, decay, polyadenylation and many others. Previous high-throughput studies have characterized general sequence features associated with increased and decreased splicing of certain exons, but these studies are limited by not knowing the mechanisms, and in particular, the mediating RNA binding proteins, underlying these associations. Results: Here we utilize ENCODE data from diverse data modalities to identify functional splicing regulatory elements and their associated RNA binding proteins. We identify features which make splicing events more sensitive to depletion of RNA binding proteins, as well as which RNA binding proteins act as splicing regulators sensitive to depletion. To analyze the sequence determinants underlying RBP-RNA interactions impacting splicing, we assay tens of thousands of sequence variants in a high-throughput splicing reporter called Vex-seq and confirm a small subset in their endogenous loci using CRISPR base editors. Finally, we leverage other large transcriptomic datasets to confirm the importance of RNA binding proteins which we designed experiments around and identify additional RBPs which may act as additional splicing regulators of the exons studied. Conclusions: This study identifies sequence and other features underlying splicing regulation mediated specific RNA binding proteins, as well as validates and identifies other potentially important regulators of splicing in other large transcriptomic datasets.


2020 ◽  
Vol 21 (12) ◽  
pp. 4548 ◽  
Author(s):  
Kwanuk Lee ◽  
Hunseung Kang

Organellar gene expression (OGE) in chloroplasts and mitochondria is primarily modulated at post-transcriptional levels, including RNA processing, intron splicing, RNA stability, editing, and translational control. Nucleus-encoded Chloroplast or Mitochondrial RNA-Binding Proteins (nCMRBPs) are key regulatory factors that are crucial for the fine-tuned regulation of post-transcriptional RNA metabolism in organelles. Although the functional roles of nCMRBPs have been studied in plants, their cellular and physiological functions remain largely unknown. Nevertheless, existing studies that have characterized the functions of nCMRBP families, such as chloroplast ribosome maturation and splicing domain (CRM) proteins, pentatricopeptide repeat (PPR) proteins, DEAD-Box RNA helicase (DBRH) proteins, and S1-domain containing proteins (SDPs), have begun to shed light on the role of nCMRBPs in plant growth, development, and stress responses. Here, we review the latest research developments regarding the functional roles of organellar RBPs in RNA metabolism during growth, development, and abiotic stress responses in plants.


Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 288
Author(s):  
Victor Muleya ◽  
Claudius Marondedze

RNA-binding proteins (RBPs) are typical proteins that bind RNA through single or multiple RNA-binding domains (RBDs). These proteins have a functional role in determining the fate or function of the bound RNAs. A few hundred RBPs were known through in silico prediction based on computational assignment informed by structural similarity and the presence of classical RBDs. However, RBPs lacking such conventional RBDs were omitted. Owing to the recent mRNA interactome capture technology based on UV-crosslinking and fixing proteins to their mRNA targets followed by affinity capture purification and identification of RBPs by tandem mass spectrometry, several hundreds of RBPs have recently been discovered. These proteome-wide studies have colossally increased the number of proteins implicated in RNA binding and unearthed hundreds of novel RBPs lacking classical RBDs, such as proteins involved in intermediary metabolism. These discoveries provide wide insights into the post-transcriptional gene regulation players and their role in plant signaling, such as environmental stress conditions. In this review, novel discoveries of RBPs are explored, particularly on the evolving knowledge of their role in stress responses. The molecular functions of these RBPs, particularly focusing on those that do not have classical RBDs, are also elucidated at the systems level.


2020 ◽  
Vol 48 (9) ◽  
pp. 4725-4740 ◽  
Author(s):  
Michael Backlund ◽  
Frank Stein ◽  
Mandy Rettel ◽  
Thomas Schwarzl ◽  
Joel I Perez-Perri ◽  
...  

Abstract Cellular stress causes multifaceted reactions to trigger adaptive responses to environmental cues at all levels of the gene expression pathway. RNA-binding proteins (RBP) are key contributors to stress-induced regulation of RNA fate and function. Here, we uncover the plasticity of the RNA interactome in stressed cells, differentiating between responses in the nucleus and in the cytoplasm. We applied enhanced RNA interactome capture (eRIC) analysis preceded by nucleo-cytoplasmic fractionation following arsenite-induced oxidative stress. The data reveal unexpectedly compartmentalized RNA interactomes and their responses to stress, including differential responses of RBPs in the nucleus versus the cytoplasm, which would have been missed by whole cell analyses.


RNA ◽  
2012 ◽  
Vol 18 (10) ◽  
pp. 1846-1861 ◽  
Author(s):  
L. Kafkova ◽  
M. L. Ammerman ◽  
D. Faktorova ◽  
J. C. Fisk ◽  
S. L. Zimmer ◽  
...  

2018 ◽  
Vol 62 (1) ◽  
pp. 51-64 ◽  
Author(s):  
Nikolay Manavski ◽  
Lisa-Marie Schmid ◽  
Jörg Meurer

In contrast to the cyanobacterial ancestor, chloroplast gene expression is predominantly governed on the post-transcriptional level such as modifications of the RNA sequence, decay rates, exo- and endonucleolytic processing as well as translational events. The concerted function of numerous chloroplast RNA-binding proteins plays a fundamental and often essential role in all these processes but our understanding of their impact in regulation of RNA degradation is only at the beginning. Moreover, metabolic processes and post-translational modifications are thought to affect the function of RNA protectors. These protectors contain a variety of different RNA-recognition motifs, which often appear as multiple repeats. They are required for normal plant growth and development as well as diverse stress responses and acclimation processes. Interestingly, most of the protectors are plant specific which reflects a fast-evolving RNA metabolism in chloroplasts congruent with the diverging RNA targets. Here, we mainly focused on the characteristics of known chloroplast RNA-binding proteins that protect exonuclease-sensitive sites in chloroplasts of vascular plants.


2020 ◽  
Author(s):  
Meixia Li ◽  
Zhicheng Zhang ◽  
Sam Balzarini ◽  
Bhavesh Parmar ◽  
Boonen Kurt ◽  
...  

Abstract BackgroundRNA binding proteins regulate gene expression at the post-transcriptional level by controlling the fate of RNA, in processes such as mRNA localization, translation, splicing and stability. The annotation of RNA binding proteins is mainly based on the well-known RNA binding domains and motifs. However, novel RNA binding proteins without such conventional domains have been identified in different species using in vivo RNA interactome capture. To find support for novel conserved RNA binding proteins in plants, we applied an optimized RNA interactome capture to the monocot model Brachypodium distachyon.ResultsWe provide experimental evidence for 203 RNA binding proteins isolated from Brachypodium shoot tissue and leaf mesophyll protoplasts, and grouped these into classic RNA binding proteins with recognizable RNA binding domains and motifs, and candidate RNA binding proteins without such domains. Compared to RNA binding proteins captured in Arabidopsis thaliana, candidate RNA binding proteins involved in carbon fixation and carbon metabolic pathways are highly conserved. We tried to validate the RNA binding proteins captured in this research through a silica-based method, but this method appears not efficient for plants. This may indicate that optimized methods to validate high throughout RNA binding proteome are required for plants.ConclusionsOur results provide classic and candidate RNA binding proteins in Brachypodium distachyon and conserved RNA binding proteins in flowering plants. Future functional characterization should point out what the significance of RNA binding is for the function of these proteins.


2021 ◽  
Author(s):  
Brooklynne Watkins ◽  
Mohamed T. Elaswad ◽  
Chloe Pestrue ◽  
Katherine Sharp ◽  
Elizabeth Breton ◽  
...  

One emerging paradigm of cellular organization of RNA and RNA binding proteins is the formation of membraneless organelles (MLOs). Examples of MLOs include several types of RNP (ribonucleoprotein) granules that form via phase separation. Proper regulation of the phase transitions of RNA binding proteins is critical as dysregulation can lead to disease states. Germ granules are small RNP granules conserved across metazoa. In C. elegans, when oogenesis undergoes an extended meiotic arrest, germ granules assemble into much larger, more complex RNP granules whose hypothesized function is to regulate RNA metabolism and maintain oocyte quality. As a step towards gaining insight into the function of RNP granules, in this report we characterize distinct phases for four RNA binding proteins in arrested oocytes. We find that PGL-1 is dynamic and has liquid-like properties, while MEG-3 has gel-like properties, both similar to their properties in small germ granules of embryos. We also show that MEX-3 exhibits gel-like properties in many regards but is more dynamic than MEG-3. We find CGH-1 is dynamic but does not consistently behave liquid-like, and may be an intermediate phase within RNP granules. We also show that the distinct phases of the RNA binding proteins are associated with differential responses to stress.


Sign in / Sign up

Export Citation Format

Share Document