scholarly journals Sources of Variability in the Response of Labeled Microspheres and B Cells during the Analysis by a Flow Cytometer

2021 ◽  
Vol 22 (15) ◽  
pp. 8256
Author(s):  
Adolfas K. Gaigalas ◽  
Yu-Zhong Zhang ◽  
Linhua Tian ◽  
Lili Wang

A stochastic model of the flow cytometer measurement process was developed to assess the nature of the observed coefficient of variation (CV%) of the mean fluorescence intensity (MFI) from a population of labeled microspheres (beads). Several sources of variability were considered: the total number of labels on a bead, the path through the laser beam, the optical absorption cross-section, the quantum yield, the numerical aperture of the collection optics, and the photoelectron conversion efficiency of the photomultiplier (PMT) cathode. The variation in the number of labels on a bead had the largest effect on the CV% of the MFI of the bead population. The variation in the path of the bead through the laser beam was minimized using flat-top lasers. The variability in the average optical properties of the labels was of minor importance for beads with sufficiently large number of labels. The application of the bead results to the measured CV% of labeled B cells indicated that the measured CV% was a reliable measure of the variability of antibodies bound per cell. With some modifications, the model can be extended to multicolor flow cytometers and to the study of CV% from cells with low fluorescence signal.

Author(s):  
Stephen R. Bolsover

The field of intracellular ion concentration measurement expanded greatly in the 1980's due primarily to the development by Roger Tsien of ratiometric fluorescence dyes. These dyes have many applications, and in particular they make possible to image ion concentrations: to produce maps of the ion concentration within living cells. Ion imagers comprise a fluorescence microscope, an imaging light detector such as a video camera, and a computer system to process the fluorescence signal and display the map of ion concentration.Ion imaging can be used for two distinct purposes. In the first, the imager looks at a field of cells, measuring the mean ion concentration in each cell of the many in the field of view. One can then, for instance, challenge the cells with an agonist and examine the response of each individual cell. Ion imagers are not necessary for this sort of experiment: one can instead use a system that measures the mean ion concentration in a just one cell at any one time. However, they are very much more convenient.


1984 ◽  
Vol 106 (1) ◽  
pp. 252-257 ◽  
Author(s):  
D. E. Metzger ◽  
C. S. Fan ◽  
S. W. Haley

Modern high-performance gas turbine engines operate at high turbine inlet temperatures and require internal convection cooling of many of the components exposed to the hot gas flow. Cooling air is supplied from the engine compressor at a cost to cycle performance and a design goal is to provide necessary cooling with the minimum required cooling air flow. In conjunction with this objective, two families of pin fin array geometries which have potential for improving airfoil internal cooling performance were studied experimentally. One family utilizes pins of a circular cross section with various orientations of the array with respect to the mean flow direction. The second family utilizes pins with an oblong cross section with various pin orientations with respect to the mean flow direction. Both heat transfer and pressure loss characteristics are presented. The results indicate that the use of circular pins with array orientation between staggered and inline can in some cases increase heat transfer while decreasing pressure loss. The use of elongated pins increases heat transfer, but at a high cost of increased pressure loss. In conjunction with the present measurements, previously published results were reexamined in order to estimate the magnitude of heat transfer coefficients on the pin surfaces relative to those of the endwall surfaces. The estimate indicates that the pin surface coefficients are approximately double the endwall values.


A theory is developed which describes the scattering of radio waves by the random thermal fluctuations of electron density in a collision-free plasma. The frequency spectrum, as well as the amplitude, of the scattered radiation is calculated. Particular attention is paid to the part of the spectrum which corresponds to small Doppler shifts, this being the region of greatest significance in connexion with the phenomenon of incoherent scattering from the ionosphere. The calculations are based on a generalized version of Nyquist’s noise theorem, and they lead to the following conclusions: (1) The mean scattering cross-section for the ionosphere is equal to that which would exist if each of the electrons scattered independently with a cross-section of one-half the classical Thomson cross-section. (2) The mean Doppler broadening of the scattered signal corresponds roughly to the speed of the ions rather than to that of the electrons. (3) The spectral shape of this signal is not Gaussian. There is a mild maximum in the spectrum away from the central frequency, as can be seen in figure 1. (4) Plasma resonance effects contribute only negligibly to the scattering for frequencies currently of interest.


1965 ◽  
Vol 7 (1) ◽  
pp. 1-7 ◽  
Author(s):  
P. J. Baker

This paper presents the results of heat transfer measurements taken on a two-dimensional supersonic parallel diffuser. The wall static pressure distributions and the corresponding heat transfer coefficients and fluxes have been measured for a range of initial total pressures. The effects of varying the area of the diffuser cross-section for the same upstream generating nozzle have also been studied. Mach number profiles measured at sections along the diffuser show that in the presence of shock waves and a positive pressure gradient the flow is very much underdeveloped. In general, the mean level of heat transfer is found to be much greater than that predicted by conventional empirical equations for subsonic pipe flows with zero pressure gradient. Further, on comparison between normal and oblique shock diffusion the former is found to give the higher level of heat transfer.


2018 ◽  
Vol 9 (1) ◽  
pp. 56-65 ◽  
Author(s):  
M. A. Bezuglyi ◽  
N. V. Bezuglaya ◽  
S. Kostuk

The correct accounting of laser emitter parameters for improvement of diagnostic authenticity of methods of optical biomedical diagnostic is important problem for applied biophotonic tasks. The purpose of the current research is estimation of influence of energy distribution profile in transversal section of laser beam on light scattering by human skin layers at photometry by ellipsoidal reflectors.Biomedical photometer with ellipsoidal reflectors for investigation of biological tissue specimens in transmitted and reflected light uses laser probing radiation with infinitely thin, Gauss-type and uniform cross-section profile. Distribution of beams with denoted profiles, which consist of 20 million photons with wavelength 632.8 nm, was modeled by using of Monte-Carlo simulation in human skin layers (corneous layer, epidermis, derma and adipose tissue) of various anatomic thickness and with ellipsoidal reflectors with focal parameter equal to 16.875 mm and eccentricity of 0.66.The modeling results represent that illuminance distribution in zones of photometric imaging is significantly influenced by the laser beam cross-section profile for various thickness of corneous layer and epidermis in transmitted and reflected light, and also derma in reflected light. Illuminance distribution for adipose tissue in reflected and transmitted light, and also derma in transmitted light, practically do not depend of laser beam profile for anatomic thicknesses, which are appropriate for human skin on various sections of body.There are represented results of modified Monte-Carlo simulation method for biomedical photometer with ellipsoidal reflectors during biometry of human skin layers. For highly scattered corneous layer and epidermis the illumination of middle and external rings of photometric images changes depending from the laser beam profile for more than 50 % in transmitted and 30 % in reflected light. For weakly scattering skin layers (derma and adipose layer) the influence of profile can be observed only for derma in reflected layer and is equal not more than 15 %. 


1970 ◽  
Vol 25 (11) ◽  
pp. 1617-1626 ◽  
Author(s):  
H. Frank ◽  
M. Neiger ◽  
H.-P. Popp

Abstract A wall stabilized low-current cylindric arc was used to produce the radiation of the negative Bromine-ions. The radiation consists of an affinity-continuum with a long-wave threshold of 3682 Å, yielding an electron affinity for Bromine of 3.366 eV, and of an intense electron-atom Bremsstrahlung in the visible. Intensity measurements of the continua allow the determination of the photo-detachment-and attachment-cross-sections of Bromine and also the determination of the mean elastic cross-section of electrons against Bromine atoms.


1984 ◽  
Vol 27 (5) ◽  
pp. 411-413
Author(s):  
V. B. Korshikov ◽  
P. R. Lakhno ◽  
V. N. Rozhdestvin

Author(s):  
Hannah C. Mercer ◽  
Patrick S. Edwards

This paper examines the gender wage gap in professional sports using a pooled cross-section of professional tennis players across the years 2011-2017. The dependent variable is the prize money earned by the top fifty male and top fifty female ranked tennis players throughout the world. This prize money is measured in 2017 real dollar value. The independent variables include: number of tournaments played, age, rank differentiation, gender, country and WTA/ATP score. Gender inequality is measured by determining the wage gap shown through the mean prize money earned by the professional tennis players from 2011-2017. While prize money for men and women has recently become equal in the Grand Slam tournaments, there is evidence to show that women's prize money is considerably lower in the less-publicized tournaments. Results of the ordinary least squares (OLS) regressions suggest that there is evidence for a gender-related pay disparity in professional tennis due to a number of statistically significant variables including WTA/ATP score (+), age (+), country (+) and the gender (-) and year (+) dummies.


Sign in / Sign up

Export Citation Format

Share Document