scholarly journals Interleukin-21 in Viral Infections

2021 ◽  
Vol 22 (17) ◽  
pp. 9521
Author(s):  
Hironobu Asao

Interleukin (IL)-21 is a cytokine that affects the differentiation and function of lymphoid and myeloid cells and regulates both innate and adaptive immune responses. In addition to regulating the immune response to tumor and viral infections, IL-21 also has a profound effect on the development of autoimmune and inflammatory diseases. IL-21 is produced mainly from CD4+ T cells—in particular, follicular helper T (Tfh) cells—which have a great influence on the regulation of antibody production. It is also an important cytokine for the activation of CD8+ T cells, and its role in recovering the function of CD8+ T cells exhausted by chronic microbial infections and cancer has been clarified. Thus, IL-21 plays an extremely important role in viral infections, especially chronic viral infections. In this review, I will introduce the findings to date on how IL-21 is involved in some typical viral infections and the potential of treating viral diseases with IL-21.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 564-564
Author(s):  
John C. Riches ◽  
Jeff K. Davies ◽  
Fabienne McClanahan ◽  
Rewas Fatah ◽  
Sameena Iqbal ◽  
...  

Abstract Abstract 564 The ability to evade immune destruction is increasingly being recognised as a crucial feature of cancer cells. Chronic lymphocytic leukemia (CLL) is associated with profound defects in T-cell function, resulting in failure of anti-tumor immunity and increased susceptibility to infections. T cells from CLL patients exhibit functional defects and alterations in gene expression, that show similarities to exhausted T cells in chronic viral infections. However, it is unclear whether CLL T cells are truly exhausted, or whether these defects are restricted to expanded populations of CMV specific T cells. We investigated the phenotype and function of CD8+ T cells from CLL patients and controls matched for age and CMV-serostatus. We demonstrate an increased proportion of CCR7- effector T cells in both CLL patients and CMV-seropositive individuals (p<0.05). CD8+ and CD4+ T cells from CLL patients had increased expression of exhaustion markers CD160 and CD244 irrespective of CMV-serostatus (p<0.01), whereas increased PD1 expression on CD8+ T cells was limited to CMV-seronegative patients (p=0.002). CLL CD8+ T cells also showed functional defects in proliferation and cytotoxicity irrespective of CMV-serostatus, with the cytolytic defect caused by a combination of impaired granzyme B packaging into secretory vesicles and non-polarized degranulation. In contrast to virally-induced exhaustion, CLL T cells showed increased production of interferon-γ with increased T-BET expression (p<0.01), normal IL-2 production, and no downregulation of IL-7R. Therefore, while CLL CD8+ T cells exhibit some features of T-cell exhaustion, they show important differences (Table 1). These findings also exclude CMV as the sole cause of T cell defects in CLL. Lenalidomide has recently been demonstrated to have significant clinical activity in CLL. Its mechanism of action in this disease is not well understood, but it thought to act primarily by a combination of CLL cell and immune cell activation. We therefore examined the ability of lenalidomide to repair the observed T cell defects by investigating the impact of this agent on the gene expression profiles and function of CLL T cells. Treatment of CLL CD8+ T cells with lenalidomide increased the expression of 137 genes, while 34 genes were downregulated. The most prominent changes in expression were of genes involved in cytoskeletal signaling including WASF1 (Wiskott-Aldrich syndrome protein, family member 1), and TPM2 (tropomyosin 2). There was also upregulation of genes involved in lymphocyte activation, including TNFSF4 (Tumor necrosis factor ligand superfamily, member 4: OX40L), LAG3 (Lymphocyte-activation gene 3), and TNF, and genes involved in cell proliferation such as IKZF1 (Ikaros) and GRN (Granulin). Although lenalidomide treatment or anti-CD3 stimulation alone had no impact on T-bet expression, co-treatment with both anti-CD3 stimulation and lenalidomide resulted in significantly enhanced T-bet expression and increased production of interferon-γ. In contrast, lenalidomide treatment alone was able to improve T cell cytotoxic function, associated with repair of trafficking of granzyme B into the immunological synapse. In conclusion, T cells from CLL patients exhibit features of T-cell pseudo-exhaustion that are present irrespective of CMV serostatus. Treatment of CLL T cells with lenalidomide results in upregulation of genes involved in proliferation, activation, and cytoskeletal pathways, resulting in repair of the functional T cell defects. Table 1. Comparison of the phenotypic and functional defects of T cells from CLL patients with T-cell “exhaustion” in chronic viral infections Exhausted T cells in chronic viral infections T cells from CLL patients Increased expression of inhibitory receptors Yes Yes Abnormal transcription factor profile Yes Yes Reduced proliferative potential Yes Yes Decreased expression of IL-7R (CD127) Yes No Decreased cytokine production ↓IL-2, ↓IFN-γ Yes No Impaired cytotoxicity Yes Yes Disclosures: Riches: Celgene: Research Funding. Gribben:Celgene: Honoraria; Roche: Honoraria; Pharmacyclics: Honoraria; GSK: Honoraria; Mundipharma: Honoraria; Gilead: Honoraria.


2019 ◽  
Vol 216 (3) ◽  
pp. 571-586 ◽  
Author(s):  
Isabel Barnstorf ◽  
Mariana Borsa ◽  
Nicolas Baumann ◽  
Katharina Pallmer ◽  
Alexander Yermanos ◽  
...  

Chronic viral infections are widespread among humans, with ∼8–12 chronic viral infections per individual, and there is epidemiological proof that these impair heterologous immunity. We studied the impact of chronic LCMV infection on the phenotype and function of memory bystander CD8+ T cells. Active chronic LCMV infection had a profound effect on total numbers, phenotype, and function of memory bystander T cells in mice. The phenotypic changes included up-regulation of markers commonly associated with effector and exhausted cells and were induced by IL-6 in a STAT1-dependent manner in the context of chronic virus infection. Furthermore, bystander CD8 T cell functions were reduced with respect to their ability to produce inflammatory cytokines and to undergo secondary expansion upon cognate antigen challenge with major cell-extrinsic contributions responsible for the diminished memory potential of bystander CD8+ T cells. These findings open new perspectives for immunity and vaccination during chronic viral infections.


Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 188 ◽  
Author(s):  
Ye Chen ◽  
Jacob Colello ◽  
Wael Jarjour ◽  
Song Zheng

Regulatory T cells (Tregs) are essential for maintaining immune tolerance and preventing autoimmune and inflammatory diseases. The activity and function of Tregs are in large part determined by various intracellular metabolic processes. Recent findings have focused on how intracellular metabolism can shape the development, trafficking, and function of Tregs. In this review, we summarize and discuss current research that reveals how distinct metabolic pathways modulate Tregs differentiation, phenotype stabilization, and function. These advances highlight numerous opportunities to alter Tregs frequency and function in physiopathologic conditions via metabolic manipulation and have important translational implications.


2021 ◽  
Author(s):  
Fabio Luciani ◽  
Jerome Samir ◽  
Preston Leung ◽  
Katherine Kedzierska ◽  
Tho Nguyen ◽  
...  

T-cell exhaustion is a hallmark of hepatitis C virus (HCV) infection and limits protective immunity in chronic viral infections and cancer. Limited knowledge exists of the initial viral and immune dynamics that characterise exhaustion in humans. We studied longitudinal blood samples from a unique cohort of subjects with primary infection using single cell multi-omics to identify the functions and phenotypes of HCV-specific CD8+ T cells. Early elevated IFN-γ response against the transmitted virus was associated with the rate of immune escape, larger clonal expansion, and early onset of exhaustion. Irrespective of disease outcome we discovered progenitors of early-exhaustion with intermediate expression of PD-1. Intra clonal analysis revealed distinct trajectories with multiple fates suggesting evolutionary plasticity of precursor cells. These findings challenge current paradigm on the contribution of CD8+ T cells to HCV disease outcome and provide data for future studies on T-cell differentiation in human infections.


2003 ◽  
Vol 46 (4) ◽  
pp. 131-137 ◽  
Author(s):  
Pavel Chrobák

Regulatory T cells have emerged as an important mechanism of regulating tolerance and T cell responses. CD4+ regulatory T cells can be divided into two main groups, natural regulatory T cells, which express high levels of CD25 on their cell surface and phenotypically diverse adaptive (antigen induced) regulatory T cells. Natural regulatory T cells are made in the thymus, and require strong costimulatory signals for induction and maintenance, express a transcription factor called Foxp3, and function by a largely unknown mechanism. Adaptive (antigen induced) regulatory T cells are made by sub-optimal antigenic signals in the periphery, in the presence of immunosuppressive cytokines, often in special circumstances, such as chronic viral infections or after mucosal administration of antigen, and rely on cytokines such as IL-10 and TGF-β for suppression. Regulatory T cells offer a great potential for the treatment of autoimmune diseases and during transplantation.


Blood ◽  
2013 ◽  
Vol 121 (9) ◽  
pp. 1612-1621 ◽  
Author(s):  
John C. Riches ◽  
Jeffrey K. Davies ◽  
Fabienne McClanahan ◽  
Rewas Fatah ◽  
Sameena Iqbal ◽  
...  

Abstract T-cell exhaustion, originally described in chronic viral infections, was recently reported in solid and hematologic cancers. It is not defined whether exhaustion contributes to T-cell dysfunction observed in chronic lymphocytic leukemia (CLL). We investigated the phenotype and function of T cells from CLL patients and age-matched controls. CD8+ and CD4+ T cells from CLL patients had increased expression of exhaustion markers CD244, CD160, and PD1, with expansion of a PD1+BLIMP1HI subset. These molecules were most highly expressed in the expanded population of effector T cells in CLL. CLL CD8+ T cells showed functional defects in proliferation and cytotoxicity, with the cytolytic defect caused by impaired granzyme packaging into vesicles and nonpolarized degranulation. In contrast to virally induced exhaustion, CLL T cells showed increased production of interferon-γ and TNFα and increased expression of TBET, and normal IL2 production. These defects were not restricted to expanded populations of cytomegalovirus (CMV)–specific cells, although CMV seropositivity modulated the distribution of lymphocyte subsets, the functional defects were present irrespective of CMV serostatus. Therefore, although CLL CD8+ T cells exhibit features of T-cell exhaustion, they retain the ability to produce cytokines. These findings also exclude CMV as the sole cause of T-cell defects in CLL.


Immunity ◽  
2016 ◽  
Vol 45 (2) ◽  
pp. 415-427 ◽  
Author(s):  
Daniel T. Utzschneider ◽  
Mélanie Charmoy ◽  
Vijaykumar Chennupati ◽  
Laurène Pousse ◽  
Daniela Pais Ferreira ◽  
...  

1970 ◽  
Vol 1 (1) ◽  
pp. 13-19
Author(s):  
Sheikh Mohammad Fazle Akbar ◽  
Md Sakirul Islam Khan ◽  
Shunji Mishiro

Chronic viral infections represent major challenges in contemporary medicine, virology and pharmacology. The virus-bearing hosts are commonly found in every parts of the world and it is extremely difficult to manage these patients. In addition, considerable numbers of these patients develop progressive diseases and severe complications. Finally, most of these patients act as permanent reservoirs of virus. Understandings of viral life cycle during the last decade of 20th century and the first decade of 21st century have allowed development of hundreds of antiviral agents for different diseases. But, the clinical efficacy of these drugs is not yet satisfactory. In addition, virologists have provided conclusive evidences suggesting that eradication of most chronic virus from infected hosts may an unachievable goal. In this context, it is essential to develop alternative, novel, and evidence-based therapeutic maneuver for these patients. Manipulation of host immune system may be one of these approaches. We would discuss about scopes, limitations, and strategies for manipulation for controlling of chronic viral infections. The primary function of the host's immune system is to mount responses that protect the individual from various microbial infections including viruses. Host's immune responses also control the spread and virulence of the viruses [1]. This is applicable to viruses that cause acute infection. After entering the hosts, these viruses are localized in host's tissues, proliferate and induce antiviral immunity. These cellular events may cause damage and destruction of tissues and the host exhibit features of acute inflammatory diseases. However, the viruses are either almost completely eliminated from the hosts or adequately controlled in situ by host's immune systems. However, chronic infection is established by many viruses because the hosts induce improper and uncoordinated immune responses against these viruses. Most viruses cause persistent infection by evading the host immune surveillance mechanism. Both virus-related factors and host-dependent factors are primarily responsible for viral persistency in subjects with chronic viral infections.    doi: 10.3329/blj.v1i1.2620 Bangladesh Liver Journal Vol.1(1) 2009 p.13-19 


Sign in / Sign up

Export Citation Format

Share Document