scholarly journals Anaesthesia-Induced Transcriptomic Changes in the Context of Renal Ischemia Uncovered by the Use of a Novel Clamping Device

2021 ◽  
Vol 22 (18) ◽  
pp. 9840
Author(s):  
Charles Verney ◽  
David Legouis ◽  
Sandrine Placier ◽  
Tiffany Migeon ◽  
Philippe Bonnin ◽  
...  

Ischemia is a common cause of acute kidney injury worldwide, frequently occurring in patients undergoing cardiac surgery or admitted to the intensive care unit (ICU). Thus, ischemia-reperfusion injury (IRI) remains one of the main experimental models for the study of kidney diseases. However, the classical technique, based on non-traumatic surgical clamps, suffers from several limitations. It does not allow the induction of multiple episodes of acute kidney injury (AKI) in the same animal, which would be relevant from a human perspective. It also requires a deep and long sedation, raising the question of potential anaesthesia-related biases. We designed a vascular occluding device that can be activated remotely in conscious mice. We first assessed the intensity and the reproducibility of the acute kidney injury induced by this new device. We finally investigated the role played by the anaesthesia in the IRI models at the histological, functional and transcriptomic levels. We showed that this technique allows the rapid induction of renal ischemia in a repeatable and reproducible manner, breaking several classical limitations. In addition, we used its unique specificities to highlight the renal protective effect conferred by the anaesthesia, related to the mitigation of the IRI transcriptomic program.

2020 ◽  
Vol 318 (6) ◽  
pp. F1531-F1538
Author(s):  
Ye Zhang ◽  
Jian-Jian Zhang ◽  
Xiu-Heng Liu ◽  
Lei Wang

Renal ischemia-reperfusion injury (I/R) usually occurs in renal transplantation and partial nephrectomy, which could lead to acute kidney injury. However, the effective treatment for renal I/R still remains limited. In the present study, we investigated whether inhibition of chromobox 7 (CBX7) could attenuate renal I/R injury in vivo and in vitro as well as the potential mechanisms. Adult male mice were subjected to right renal ischemia and reperfusion for different periods, both with and without the CBX7 inhibitor UNC3866. In addition, human kidney cells (HK-2) were subjected to a hypoxia/reoxygenation (H/R) process for different periods, both with or without the CBX7 inhibitor or siRNA for CBX7. The results showed that expression of CBX7, glucose regulator protein-78 (GRP78), phosphorylated eukaryotic translation initiation factor-2α (p-eIF2α), and C/EBP homologous protein (CHOP) were increased after extension of I/R and H/R periods. Moreover, overexpression of CBX7 could elevate the expression of CBX7, GRP78, p-eIF2α, and CHOP. However, CBX7 inhibition with either UNC3866 or genetic knockdown led to reduced expression of GRP78, p-eIF2α, and CHOP through nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 activation in I/R and H/R injury. Furthermore, ML385, the Nrf2 inhibitor, could elevate endoplasmic reticulum stress levels, abrogating the protective effects of UNC3866 against renal I/R injury. In conclusion, our results demonstrated that CBX7 inhibition alleviated acute kidney injury by preventing endoplasmic reticulum stress via the Nrf2/HO-1 pathway, indicating that CBX7 inhibitor could be a potential therapeutic target for renal I/R injury.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wilasinee Saisorn ◽  
Supichcha Saithong ◽  
Pornpimol Phuengmaung ◽  
Kanyarat Udompornpitak ◽  
Thansita Bhunyakarnjanarat ◽  
...  

Renal ischemia is the most common cause of acute kidney injury (AKI) that might be exacerbate lupus activity through neutrophil extracellular traps (NETs) and apoptosis. Here, the renal ischemia reperfusion injury (I/R) was performed in Fc gamma receptor 2b deficient (Fcgr2b-/-) lupus mice and the in vitro experiments. At 24 h post-renal I/R injury, NETs in peripheral blood neutrophils and in kidneys were detected using myeloperoxidase (MPO), neutrophil elastase (NE) and citrullinated histone H3 (CitH3), as well as kidney apoptosis (activating caspase-3), which were prominent in Fcgr2b-/- mice more compared to wild-type (WT). After 120 h renal-I/R injury, renal NETs (using MPO and NE) were non-detectable, whereas glomerular immunoglobulin (Ig) deposition and serum anti-dsDNA were increased in Fcgr2b-/- mice. These results imply that renal NETs at 24 h post-renal I/R exacerbated the lupus nephritis at 120 h post-renal I/R injury in Fcgr2b-/- lupus mice. Furthermore, a Syk inhibitor attenuated NETs, that activated by phorbol myristate acetate (PMA; a NETs activator) or lipopolysaccharide (LPS; a potent inflammatory stimulator), more prominently in Fcgr2b-/- neutrophils than the WT cells as determined by dsDNA, PAD4 and MPO. In addition, the inhibitors against Syk and PAD4 attenuated lupus characteristics (serum creatinine, proteinuria, and anti-dsDNA) in Fcgr2b-/- mice at 120 h post-renal I/R injury. In conclusion, renal I/R in Fcgr2b-/- mice induced lupus exacerbation at 120 h post-I/R injury partly because Syk-enhanced renal NETs led to apoptosis-induced anti-dsDNA, which was attenuated by a Syk inhibitor.


Author(s):  
Meiwen Ding ◽  
Evelyn Tolbert ◽  
Mark Birkenbach ◽  
Fatemeh Akhlaghi ◽  
Reginald Gohh ◽  
...  

Abstract Graphical Abstract Background Renal ischemia–reperfusion injury (IRI) is a major factor causing acute kidney injury (AKI). No pharmacological treatments for prevention or amelioration of I/R-induced renal injury are available. Here we investigate the protective effects of treprostinil, a prostacyclin analog, against renal IRI in vivo. Methods Male Sprague Dawley rats were subjected to bilateral renal ischemia (45 min) followed by reperfusion for 1–168 h. Treprostinil (100 ng/kg/min) or placebo was administered subcutaneously for 18–24 h before ischemia. Results Treatment with treprostinil both significantly reduced peak elevation and accelerated the return to baseline levels for serum creatinine and blood urea nitrogen versus I/R-placebo animals following IRI. I/R-treprostinil animals exhibited reduced histopathological features of tubular epithelial injury versus I/R-placebo animals. IRI resulted in a marked induction of messenger RNA coding for kidney injury biomarkers, kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin and for pro-inflammatory cytokines chemokine (C-C motif) ligand 2, interleukin 1β, interleukin 6 and intracellular adhesion molecular 1 in animals treated with placebo only relative to sham controls. Upregulation of expression of all these genes was significantly suppressed by treprostinil. Treprostinil significantly suppressed the elevation in renal lipid peroxidation found in the I/R-placebo group at 1-h post-reperfusion. In addition, renal protein expression of cleaved poly(ADP-ribose) polymerase 1 and caspase-3, -8 and -9 in I/R-placebo animals was significantly inhibited by treprostinil. Conclusions This study demonstrates the efficacy of treprostinil in ameliorating I/R-induced AKI in rats by significantly improving renal function early post-reperfusion and by inhibiting renal inflammation and tubular epithelial apoptosis. Importantly, these data suggest that treprostinil has the potential to serve as a therapeutic agent to protect the kidney against IRI in vivo.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kento Nishida ◽  
Hiroshi Watanabe ◽  
Masako Miyahisa ◽  
Yuto Hiramoto ◽  
Hiroto Nosaki ◽  
...  

AbstractThe mortality of patients with acute kidney injury (AKI) remains high due to AKI associated-lung injury. An effective strategy for preventing both AKI and AKI-associated lung injury is urgently needed. Thioredoxin-1 (Trx) is a redox-active protein that possesses anti-oxidative, anti-apoptotic and anti-inflammatory properties including modulation of macrophage migration inhibitory factor (MIF), but its short half-life limits its clinical application. Therefore, we examined the preventive effect of a long-acting Trx, which is a fusion protein of albumin and Trx (HSA-Trx), against AKI and AKI-associated lung injury. Recombinant HSA-Trx was expressed using a Pichia expression system. AKI-induced lung injury mice were generated by bilateral renal ischemia reperfusion injury (IRI). HSA-Trx administration attenuated renal IRI and its-associated lung injury. Both renal and pulmonary oxidative stress were suppressed by HSA-Trx. Moreover, HSA-Trx inhibited elevations of plasma IL-6 and TNF-α level, and suppressed IL-6–CXCL1/2-mediated neutrophil infiltration into lung and TNF-α-mediated pulmonary apoptosis. Additionally, HSA-Trx suppressed renal IRI-induced MIF expression in kidney and lung. Administration of HSA-Trx resulted in a significant increase in the survival rate of renal IRI mice. Collectively, HSA-Trx could have therapeutic utility in preventing both AKI and AKI-associated lung injury as a consequence of its systemic and sustained multiple biological action.


2012 ◽  
Vol 303 (11) ◽  
pp. F1487-F1494 ◽  
Author(s):  
Qingqing Wei ◽  
Zheng Dong

Renal ischemia-reperfusion leads to acute kidney injury (AKI), a major kidney disease associated with an increasing prevalence and high mortality rates. A variety of experimental models, both in vitro and in vivo, have been used to study the pathogenic mechanisms of ischemic AKI and to test renoprotective strategies. Among them, the mouse model of renal clamping is popular, mainly due to the availability of transgenic models and the relatively small animal size for drug testing. However, the mouse model is generally less stable, resulting in notable variations in results. Here, we describe a detailed protocol of the mouse model of bilateral renal ischemia-reperfusion. We share the lessons and experiences gained from our laboratory in the past decade. We further discuss the technical issues that account for the variability of this model and offer relevant solutions, which may help other investigators to establish a well-controlled, reliable animal model of ischemic AKI.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Lin Wang ◽  
Yan Xu

Abstract Background and Aims Renal ischemia/reperfusion (I/R) is the main cause for acute kidney injury, Nicotiflorin can ameliorate ischemia/reperfusion injury in other organs, just like in cerebral ischemic damage. Therefore, this article intends to explore whether Nicotiflorin has protective effects on renal tubular epithelial cell after ischemia-reperfusion. On the one hand, We use C57 mice to establish the Nicotiflorin group, DMSO group, AKI group, sham group and control group to investigate whether Nicotiflorin can ameliorate ischemia-reperfusion injury of kidney. In other hand, we use CCK8 to explore the optimal concentration of Nicotiflorin in renal tubular epithelial cells and find optimal hypoxia oxygenation time, in order to analysis the influence of Nicotiflorin. The results indicate that Nicotiflorin can alleviate ischemia-reperfusion injury by reducing apoptosis of renal tubular epithelial cells. Method In this study, we investigated the protective mechanism of Nicotiflorin on ischemic acute kidney injury by analyzing gene chip in patients with acute kidney injury and proving in vitro and in vivo experiments. The main methods are as follows: (1) Multiple nucleus ischemia-reperfusion model transcriptase data were selected from the NCBI GEO Datasets database and analyzed to screen out related proteins that may be involved in ischemia-reperfusion kidney injury; (2) The tertiary structure of Nicotiflorin and related proteins was obtained from the SWISS-MODEL database and the PubChem compound database. The molecular docking between protein and Nicotiflorin was performed using Autodock software, and the binding energy between Nicotiflorin and the selected protein was analyzed to determine Nicotiflorin binds to each other; (3) We set different groups, such as control group, sham group, AKI group, Nicotiflorin group and DMSO group in animals. The blood function was used to detect renal injury related function indicators 24 hours after modeling. Renal tissue samples were collected for real-time fluorescent RT-PCR, Western blotting and histopathological analysis; (4)Renal tubular epithelial cells were treated with different concentrations of Nicotiflorin, CCK8 was screened for the most appropriate concentration, and the hypoxic and reoxygenated cells were intervened at the concentration to explore the interaction between Nicotiflorin and the docking protein, and to observe the protective mechanism of Nicotiflorin on the kidney Results Conclusion Nicotiflorin binds to ATF3 and promotes the expression of Cyr61 through protein interactions to improve renal ischemia-reperfusion injury.


2019 ◽  
Vol 317 (3) ◽  
pp. F616-F622 ◽  
Author(s):  
Jin Wei ◽  
Yingliang Wang ◽  
Jie Zhang ◽  
Lei Wang ◽  
Liying Fu ◽  
...  

Transplanted kidneys usually experience several episodes of ischemia, including cold ischemia during allograft storage in preservation solution. However, previous studies focusing on cold renal ischemia were only carried out in vitro or ex vivo. In the present study, we developed and characterized an in vivo mouse model of renal ischemia-reperfusion injury (IRI) induced exclusively by cold ischemia. C57BL/6 mice underwent right kidney nephrectomy, and the left kidney was kept cool with circulating cold saline in a kidney cup, while body temperature was maintained at 37°C. We clamped the renal pedicle and flushed out the blood inside the kidney with cold saline via an opening on the renal vein. The severity of renal IRI was examined with different ischemic durations. We found that the mice with <2 h of cold ischemia exhibited no significant changes in renal function or histopathology; animals with 3 or 4 h of cold ischemia developed into mild to moderate acute kidney injury with characteristic features, including the elevation in plasma creatinine concentration and reduction in glomerular filtration rate and tubular necrosis, followed by a subsequent recovery. However, mice with 5 h of cold ischemia died in a few days with severe acute kidney injury. In summary, we generated a mouse model of renal IRI induced exclusively by cold ischemia, which mimics graft cold storage in preservation solution, and renal function can be evaluated in vivo.


2019 ◽  
Vol 139 (3) ◽  
pp. 137-142 ◽  
Author(s):  
Takaomi Shimokawa ◽  
Hidenobu Tsutsui ◽  
Takeshi Miura ◽  
Masashi Takama ◽  
Kohei Hayashi ◽  
...  

2017 ◽  
Vol 37 (22) ◽  
Author(s):  
Lei Yu ◽  
Takashi Moriguchi ◽  
Hiroshi Kaneko ◽  
Makiko Hayashi ◽  
Atsushi Hasegawa ◽  
...  

ABSTRACT Acute kidney injury (AKI) is a leading cause of chronic kidney disease. Proximal tubules are considered to be the primary origin of pathogenic inflammatory cytokines in AKI. However, it remains unclear whether other cell types, including collecting duct (CD) cells, participate in inflammatory processes. The transcription factor GATA2 is specifically expressed in CD cells and maintains their cellular identity. To explore the pathophysiological function of GATA2 in AKI, we generated renal tubular cell-specific Gata2 deletion (G2CKO) mice and examined their susceptibility to ischemia reperfusion injury (IRI). Notably, G2CKO mice exhibited less severe kidney damage, with reduced granulomacrophagic infiltration upon IRI. Transcriptome analysis revealed that a series of inflammatory cytokine genes were downregulated in GATA2-deficient CD cells, suggesting that GATA2 induces inflammatory cytokine expression in diseased kidney CD cells. Through high-throughput chemical library screening, we identified a potent GATA inhibitor. The chemical reduces cytokine production in CD cells and protects the mouse kidney from IRI. These results revealed a novel pathological mechanism of renal IRI, namely, that CD cells produce inflammatory cytokines and promote IRI progression. In injured kidney CD cells, GATA2 exerts a proinflammatory function by upregulating inflammatory cytokine gene expression. GATA2 can therefore be considered a therapeutic target for AKI.


Sign in / Sign up

Export Citation Format

Share Document