scholarly journals Mechanisms Involved in the Promoting Activity of Fibroblasts in HTLV-1-Mediated Lymphomagenesis: Insights into the Plasticity of Lymphomatous Cells

2021 ◽  
Vol 22 (19) ◽  
pp. 10562
Author(s):  
Giulia Rigotto ◽  
Barbara Montini ◽  
Adriana Mattiolo ◽  
Nayana Lazzari ◽  
Maria Assunta Piano ◽  
...  

Among the mechanisms leading to progression to Adult T-cell Leukaemia/Lymphoma in Human T-cell Leukaemia Virus type 1 (HTLV-1)-infected subjects, the contribution of stromal components remains poorly understood. To dissect the role of fibroblasts in HTLV-1-mediated lymphomagenesis, transcriptome studies, cytofluorimetric and qRT-PCR analyses of surface and intracellular markers linked to plasticity and stemness in coculture, and in vivo experiments were performed. A transcriptomic comparison between a more lymphomagenic (C91/III) and the parental (C91/PL) cell line evidenced hyperactivation of the PI3K/Akt pathway, confirmed by phospho-ELISA and 2-DE and WB analyses. C91/III cells also showed higher expression of mesenchymal and stemness genes. Short-term coculture with human foreskin fibroblasts (HFF) induced these features in C91/PL cells, and significantly increased not only the cancer stem cells (CSCs)-supporting CD10+GPR77+ HFF subpopulation, but also the percentage of ALDH1bright C91/PL cells. A non-cytotoxic acetylsalicylic acid treatment decreased HFF-induced ALDH1bright C91/PL cells, downregulated mesenchymal and stemness genes in cocultured cells, and delayed lymphoma growth in immunosuppressed mice, thus hindering the supportive activity of HFF on CSCs. These data suggest that crosstalk with HFF significantly intensifies the aggressiveness and plasticity of C91/PL cells, leading to the enrichment in lymphoma-initiating cells. Additional research is needed to better characterize these preliminary findings.

1994 ◽  
Vol 75 (7) ◽  
pp. 1623-1631 ◽  
Author(s):  
K. F. T. Copeland ◽  
A. G. M. Haaksma ◽  
J. Goudsmit ◽  
J. L. Heeney

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1432.1-1433
Author(s):  
K. Umekita ◽  
Y. Hashiba ◽  
R. Kudou ◽  
S. Miyauchi ◽  
M. Kimura ◽  
...  

Background:In clinical rheumatology, interferon-γ release assays (IGRAs) have been reported as a useful diagnostic test for latent tuberculosis infection (LTBI) before beginning the administration of biologics such as anti-TNF therapies (1). CD4-positive T cells are the main target in Human T-cell leukaemia virus type 1 (HTLV-1) infection. Several reports suggest that the reaction of tuberculin skin test (TST) is attenuated in HTLV-1-positive individuals compared with that in HTLV-1-negative individuals (2). However, it remains unclear whether IGRAs are reliable for detecting TB infection among HTLV-1-positive RA patients.Objectives:The present study aimed to investigate the usefulness of the T-SPOT.TBassay in HTLV-1-positive RA patients. In addition, the association between the existence of IFN-γ producing T cells and HTLV-1 proviral loads (PVLs) in HTLV-1-positive RA patients was analysed on the basis of the T-SPOT.TBassay results.Methods:We reviewed the medical records of 75 HTLV-1-negative and 29 HTLV-1-positive RA patients were suspected cases of LTBI and evaluated using the T-SPOT.TBassay as a clinical practice from April 2012 to July 2019. The results of T-SPOT.TBwere collected from medical records, retrospectively. Peripheral blood samples were obtained from HTLV-1-positive RA patients for the analysis of HTLV-1 PVLs values. The study protocol was approved by the research ethics committees of our hospitals.Results:Approximately 55% of the HTLV-1-positive RA patients showed invalid results for the T-SPOT.TBassay (p < 0.0001); the cause of invalid results was a spot-forming count of >10 spots in the negative controls of the T-SPOT.TBassay among HTLV-1-positive RA patients. Among HTLV-1-positive RA patients, HTLV-1 PVL values were significantly higher in 16 patients who showed invalid results than in 13 patients who did not (p = 0.003). There were no between-group differences in female patient ratio, age, RA disease activity and therapeutic regimens. IFN-γ producing cells were detected in the peripheral blood of HTLV-1-positive RA patients without stimulation with TB-specific antigens.Conclusion:The incidence of invalid results for the T-SPOT.TBassay has been reported to be as low as 0.6% (3). The results of this assay for screening of LTBI in HTLV-1-positive RA patients should be interpreted with caution. Furthermore, our results show that an increase in IFN-γ producing T cell numbers due to HTLV-1 infection in RA patients may affect the pathogenesis of RA.References:[1]Iannone, F., et al.J. Rheumatol. Suppl.91, 41-46 (2014).[2]Tachibana, N., et al.Int. J. Cancer42, 829-831 (1988).[3]Rego, K., et al.Tuberculosis (Edinb.)108, 178-185 (2018).Acknowledgments:We would like to thank Dr Yuki Hashikura and Ms Yuki Kaseda of the University of Miyazaki for their technical support in this work. We would also like to acknowledge Ms Yumiko Kai at the Institute of Rheumatology, Zenjinkai Shimin-no-Mori Hospital, for her help in data management.A part this work was supported by a grant from the Practical Research Project for Rare/Intractable Diseases of the Japan Agency for Medical Research and Development (Grant No. JP19ek0109356), a Health and Labor Sciences Research Grant on Rare and Intractable Diseases from the Ministry of Health, Labor and Welfare of Japan (Grant No. 19FC1007), and a Grant-in-Aid for Clinical Research from Miyazaki University Hospital.Disclosure of Interests:Kunihiko Umekita Paid instructor for: Astellas Pharma Inc. Chugai Pharma Inc. Tanabe-Mitsubishi Pharma Inc., Speakers bureau: Bristol-Myers Squibb, Yayoi Hashiba: None declared, Risa Kudou: None declared, Shunichi Miyauchi: None declared, Masatoshi Kimura: None declared, Motohiro Matsuda: None declared, Chihiro Iwao: None declared, Yumi Kariya: None declared, Takeshi Kawaguchi: None declared, Katoko Takajo: None declared, Koushou Iwao: None declared, Yuuki Rikitake: None declared, Ichiro Takajo: None declared, Toshihiko Hidaka Paid instructor for: Astellas Pharma Inc. Chugai Pharma Inc. Tanabe-Mitsubishi Pharma Inc., Speakers bureau: Astellas Pharma Inc. Chugai Pharma Inc. Tanabe-Mitsubishi Pharma Inc., Akihiko Okayama: None declared


2017 ◽  
Vol 372 (1732) ◽  
pp. 20160272 ◽  
Author(s):  
Charles R. M. Bangham ◽  
Masao Matsuoka

Human T-cell leukaemia virus type 1 (HTLV-1) causes not only adult T-cell leukaemia-lymphoma (ATL), but also inflammatory diseases including HTLV-1-associated myelopathy/tropical spastic paraparesis. HTLV-1 transmits primarily through cell-to-cell contact, and generates abundant infected cells in the host in order to survive and transmit to a new host. The resulting high proviral load is closely associated with the development of ATL and inflammatory diseases. To increase the number of infected cells, HTLV-1 changes the immunophenotype of infected cells, induces proliferation and inhibits apoptosis through the cooperative actions of two viral genes, tax and HTLV-1 bZIP factor ( HBZ ). As a result, infected cells survive, proliferate and infiltrate into the tissues, which is critical for transmission of the virus. Thus, the strategy of this virus is indivisibly linked with its pathogenesis, providing a clue for prevention and treatment of HTLV-1-induced diseases. This article is part of the themed issue ‘Human oncogenic viruses’.


2007 ◽  
Vol 406 (2) ◽  
pp. 317-323 ◽  
Author(s):  
Mariko Tomita ◽  
Gregg L. Semenza ◽  
Canine Michiels ◽  
Takehiro Matsuda ◽  
Jun-Nosuke Uchihara ◽  
...  

HTLV-1 (human T-cell leukaemia virus type 1) is the causative agent for ATL (adult T-cell leukaemia). HTLV-1 Tax can activate the PI3K (phosphoinositide 3-kinase)/Akt signalling pathway, which is responsible for survival of HTLV-1-infected T-cells. HIFs (hypoxia-inducible factors) are transcriptional regulators that play a central role in the response to hypoxia. Overexpression of HIF-1α in many cancers is associated with a poor response to treatment and increased patient mortality. Our objectives in the present study were to investigate whether HIF-1 was activated in HTLV-1-infected T-cells and to elucidate the molecular mechanisms of HIF-1 activation by focusing on the PI3K/Akt signalling pathway. We detected a potent pathway that activated HIF-1 in the HTLV-1-infected T-cells under a normal oxygen concentration. Enhanced HIF-1α protein expression and HIF-1 DNA-binding activity were exhibited in HTLV-1-infected T-cell lines. Knockdown of HIF-1α by siRNA (small interfering RNA) suppressed the growth and VEGF (vascular endothelial growth factor) expression of the HTLV-1-infected T-cell line. HIF-1 protein accumulation and transcriptional activity were enhanced by Tax, which was inhibited by dominant-negative Akt. Importantly, mutant forms of Tax that are defective in activation of the PI3K/Akt pathway failed to induce HIF-1 transcriptional activity. The PI3K inhibitor LY294002 suppressed HIF-1α protein expression, HIF-1 DNA-binding and HIF-1 transcriptional activity in HTLV-1-infected T-cell lines. In primary ATL cells, HIF-1α protein levels were strongly correlated with levels of phosphorylated Akt. The results of the present study suggest that PI3K/Akt activation induced by Tax leads to activation of HIF-1. As HIF-1 plays a major role in tumour progression, it may represent a molecular target for the development of novel ATL therapeutics.


Sign in / Sign up

Export Citation Format

Share Document