scholarly journals Genome-Wide Identification, Characterization and Expression Analysis of Soybean CHYR Gene Family

2021 ◽  
Vol 22 (22) ◽  
pp. 12192
Author(s):  
Bowei Jia ◽  
Yan Wang ◽  
Dajian Zhang ◽  
Wanhong Li ◽  
Hongli Cui ◽  
...  

The CHYR (CHY ZINC-FINGER AND RING FINGER PROTEIN) proteins have been functionally characterized in iron regulation and stress response in Arabidopsis, rice and Populus. However, their roles in soybean have not yet been systematically investigated. Here, in this study, 16 GmCHYR genes with conserved Zinc_ribbon, CHY zinc finger and Ring finger domains were obtained and divided into three groups. Moreover, additional 2–3 hemerythrin domains could be found in the N terminus of Group III. Phylogenetic and homology analysis of CHYRs in green plants indicated that three groups might originate from different ancestors. Expectedly, GmCHYR genes shared similar conserved domains/motifs distribution within the same group. Gene expression analysis uncovered their special expression patterns in different soybean tissues/organs and under various abiotic stresses. Group I and II members were mainly involved in salt and alkaline stresses. The expression of Group III members was induced/repressed by dehydration, salt and alkaline stresses, indicating their diverse roles in response to abiotic stress. In conclusion, our work will benefit for further revealing the biological roles of GmCHYRs.

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Intikhab Alam ◽  
Yan-Qing Yang ◽  
Yong Wang ◽  
Mei-Lan Zhu ◽  
Heng-Bo Wang ◽  
...  

2017 ◽  
Vol 26 (8) ◽  
pp. 1681-1686 ◽  
Author(s):  
Kazuhide Miyamoto ◽  
Airi Uechi ◽  
Kazuki Saito

2016 ◽  
Author(s):  
Changwei Bi ◽  
Yiqing Xu ◽  
Qiaolin Ye ◽  
Tongming Yin ◽  
Ning Ye

WRKY proteins are the plant-specific zinc finger transcription factors. They can specifically interact with the W-box ([C/T]TGAC[T/C]), which can be found in the promoter region of a large number of plant target genes, to regulate the expressions of downstream target genes. They also participate in diverse physiological and growing processes in plants. Prior to the present studies, plentiful WRKY genes have been identified and characterized in herbaceous species, but there is no large-scale study of WRKY genes in willow. With the whole genome sequencing in Salix suchowensis, we have the opportunity to conduct the genome-wide research for willow WRKY gene family. In this study, we identified 85 WRKY genes in the willow genome and renamed them from SsWRKY1 to SsWRKY85 on the basis of their specific distributions on chromosomes. Due to their diverse structural features, the 85 willow WRKY genes could be further classified into three main groups (group I - III), with five subgroups (IIa - IIe) in group II. With the multiple sequence alignment and the manual search, we found three variations of the WRKYGQK heptapeptide: WRKYGRK, WKKYGQK and WRKYGKK, and four variations of the normal zinc finger motif, which might execute some new biological functions. In addition, the SsWRKY genes from the same subgroup share the similar exon–intron structures and conserved motif domains. Further studies of SsWRKY genes revealed that segmental duplication events played the prominent roles in the expansion of SsWRKY genes. Distinct expression profiles of SsWRKY genes with RNA sequencing data revealed that diverse expression patterns among five tissues, including tender roots, young leaves, vegetative buds, non-lignified stems and barks. With the analyses of WRKY gene family in willow, it is not only beneficial to complete the functional and annotation information of WRKY genes family in woody plants, but also provide important references to investigate the expansion and evolution of this gene family in flowering plants.


2016 ◽  
Author(s):  
Changwei Bi ◽  
Yiqing Xu ◽  
Qiaolin Ye ◽  
Tongming Yin ◽  
Ning Ye

WRKY proteins are the plant-specific zinc finger transcription factors. They can specifically interact with the W-box ([C/T]TGAC[T/C]), which can be found in the promoter region of a large number of plant target genes, to regulate the expressions of downstream target genes. They also participate in diverse physiological and growing processes in plants. Prior to the present studies, plentiful WRKY genes have been identified and characterized in herbaceous species, but there is no large-scale study of WRKY genes in willow. With the whole genome sequencing in Salix suchowensis, we have the opportunity to conduct the genome-wide research for willow WRKY gene family. In this study, we identified 85 WRKY genes in the willow genome and renamed them from SsWRKY1 to SsWRKY85 on the basis of their specific distributions on chromosomes. Due to their diverse structural features, the 85 willow WRKY genes could be further classified into three main groups (group I - III), with five subgroups (IIa - IIe) in group II. With the multiple sequence alignment and the manual search, we found three variations of the WRKYGQK heptapeptide: WRKYGRK, WKKYGQK and WRKYGKK, and four variations of the normal zinc finger motif, which might execute some new biological functions. In addition, the SsWRKY genes from the same subgroup share the similar exon–intron structures and conserved motif domains. Further studies of SsWRKY genes revealed that segmental duplication events played the prominent roles in the expansion of SsWRKY genes. Distinct expression profiles of SsWRKY genes with RNA sequencing data revealed that diverse expression patterns among five tissues, including tender roots, young leaves, vegetative buds, non-lignified stems and barks. With the analyses of WRKY gene family in willow, it is not only beneficial to complete the functional and annotation information of WRKY genes family in woody plants, but also provide important references to investigate the expansion and evolution of this gene family in flowering plants.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2437 ◽  
Author(s):  
Changwei Bi ◽  
Yiqing Xu ◽  
Qiaolin Ye ◽  
Tongming Yin ◽  
Ning Ye

WRKY proteins are the zinc finger transcription factors that were first identified in plants. They can specifically interact with the W-box, which can be found in the promoter region of a large number of plant target genes, to regulate the expressions of downstream target genes. They also participate in diverse physiological and growing processes in plants. Prior to this study, a plenty of WRKY genes have been identified and characterized in herbaceous species, but there is no large-scale study of WRKY genes in willow. With the whole genome sequencing ofSalix suchowensis, we have the opportunity to conduct the genome-wide research for willow WRKY gene family. In this study, we identified 85 WRKY genes in the willow genome and renamed them from SsWRKY1 to SsWRKY85 on the basis of their specific distributions on chromosomes. Due to their diverse structural features, the 85 willow WRKY genes could be further classified into three main groups (group I–III), with five subgroups (IIa–IIe) in group II. With the multiple sequence alignment and the manual search, we found three variations of the WRKYGQK heptapeptide: WRKYGRK, WKKYGQK and WRKYGKK, and four variations of the normal zinc finger motif, which might execute some new biological functions. In addition, the SsWRKY genes from the same subgroup share the similar exon–intron structures and conserved motif domains. Further studies of SsWRKY genes revealed that segmental duplication events (SDs) played a more prominent role in the expansion of SsWRKY genes. Distinct expression profiles of SsWRKY genes with RNA sequencing data revealed that diverse expression patterns among five tissues, including tender roots, young leaves, vegetative buds, non-lignified stems and barks. With the analyses of WRKY gene family in willow, it is not only beneficial to complete the functional and annotation information of WRKY genes family in woody plants, but also provide important references to investigate the expansion and evolution of this gene family in flowering plants.


2010 ◽  
Vol 32 (4) ◽  
pp. 387-392 ◽  
Author(s):  
Fan-Jun MENG ◽  
Ji HUANG ◽  
Yong-Mei BAO ◽  
Yan JIANG ◽  
Hong-Sheng ZHANG

1994 ◽  
Vol 269 (48) ◽  
pp. 30069-30072
Author(s):  
H.M. Hu ◽  
K O'Rourke ◽  
M.S. Boguski ◽  
V.M. Dixit

Sign in / Sign up

Export Citation Format

Share Document