scholarly journals The Influence of Prenatal Fumonisin Exposure on Bone Properties, as well as OPG and RANKL Expression and Immunolocalization, in Newborn Offspring Is Sex and Dose Dependent

2021 ◽  
Vol 22 (24) ◽  
pp. 13234
Author(s):  
Ewa Tomaszewska ◽  
Halyna Rudyk ◽  
Izabela Świetlicka ◽  
Monika Hułas-Stasiak ◽  
Janine Donaldson ◽  
...  

The current study examined the effects of exposure of pregnant dams to fumonisins (FBs; FB1 and FB2), from the seventh day of pregnancy to parturition, on offspring bone metabolism and properties. The rats were randomly divided into three groups intoxicated with FBs at either 0, 60, or 90 mg/kg b.w. Body weight and bone length were affected by fumonisin exposure, irrespective of sex or dose, while the negative and harmful effects of maternal FBs’ exposure on bone mechanical resistance were sex and dose dependent. The immunolocalization of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-Β ligand (RANKL), in bone and articular cartilage, indicated that the observed bone effects resulted from the FB-induced alterations in bone metabolism, which were confirmed by the changes observed in the Western blot expression of OPG and RANKL. It was concluded that the negative effects of prenatal FB exposure on the general growth and morphometry of the offspring bones, as a result of the altered expression of proteins responsible for bone metabolism, were dose and sex dependent.

2005 ◽  
Vol 185 (3) ◽  
pp. 401-413 ◽  
Author(s):  
Jung-Min Koh ◽  
Young-Sun Lee ◽  
Chang-Hyun Byun ◽  
Eun-Ju Chang ◽  
Hyunsoo Kim ◽  
...  

Growing evidence has shown a biochemical link between increased oxidative stress and reduced bone density. Although α-lipoic acid (α-LA) has been shown to act as a thiol antioxidant, its effect on bone cells has not been determined. Using proteomic analysis, we identified six differentially expressed proteins in the conditioned media of α-LA-treated human bone marrow stromal cell line (HS-5). One of these proteins, receptor activator of nuclear factor κB ligand (RANKL), was significantly up-regulated, as confirmed by immunoblotting with anti-RANKL antibody. ELISA showed that α-LA stimulated RANKL production in cellular extracts (membranous RANKL) about 5-fold and in conditioned medium (soluble RANKL) about 23-fold, but had no effect on osteoprotegerin (OPG) secretion. Despite increasing the RANKL/OPG ratio, α-LA showed a dose-dependent suppression of osteoclastogenesis, both in a coculture system of mouse bone marrow cells and osteoblasts and in a mouse bone marrow cell culture system, and reduced bone resorption in a dose-dependent manner. In addition, α-LA-induced soluble RANKL was not inhibited by matrix metalloprotease inhibitors, indicating that soluble RANKL is produced by α-LA without any posttranslational processing. In contrast, α-LA had no significant effect on the proliferation and differentiation of HS-5 cells. These results suggest that α-LA suppresses osteoclastogenesis by directly inhibiting RANKL–RANK mediated signals, not by mediating cellular RANKL production. In addition, our findings indicate that α-LA-induced soluble RANKL is not produced by shedding of membranous RANKL.


2017 ◽  
Vol 23 (5) ◽  
pp. 989-1001 ◽  
Author(s):  
Priscila L. Sequetto ◽  
Reggiani V. Gonçalves ◽  
Aloísio S. Pinto ◽  
Maria G. A. Oliveira ◽  
Izabel R. S. C. Maldonado ◽  
...  

AbstractBy using an experimental model of dexamethasone-induced osteoporosis we investigated the effects of different therapeutic schemes combining sodium alendronate (SA) and simvastatin on bone mineral and protein composition, microstructural and mechanical remodeling. Wistar rats were randomized into eight groups: G1: non-osteoporotic; G2: osteoporotic; G3, G4, and G5: osteoporotic+SA (0.2, 0.4, and 0.8 mg/kg, respectively); G6, G7, and G8: osteoporotic+SA (0.2, 0.4, and 0.8 mg/kg, respectively)+simvastatin (0.4, 0.6, and 1 mg/kg, respectively). Osteoporosis was induced by dexamethasone (7 mg/kg, i.m.) once a week for 5 weeks. All treatments were administered for 8 weeks. Dexamethasone increased serum levels of alkaline phosphatase, calcium, phosphorus, and urea, especially in non-treated animals, which showed severe osteoporosis. Dexamethasone also induced bone microstructural fragility and reduced mechanical resistance, which were associated with a marked depletion in mineral mass, collagenous and non-collagenous protein levels in cortical and cancellous bone. Although SA has attenuated osteoporosis severity, the effectiveness of drug therapy was enhanced combining alendronate and simvastatin. The restoration in serum parameters, organic and inorganic bone mass, and mechanical behavior showed a dose-dependent effect that was potentially related to the complementary mechanisms by which each drug acts to induce bone anabolism, accelerating tissue repair.


2011 ◽  
Vol 71 (1) ◽  
pp. 108-113 ◽  
Author(s):  
Maria J H Boumans ◽  
Rogier M Thurlings ◽  
Lorraine Yeo ◽  
Dagmar Scheel-Toellner ◽  
Koen Vos ◽  
...  

ObjectivesTo examine how rituximab may result in the inhibition of joint destruction in rheumatoid arthritis (RA) patients.MethodsTwenty-eight patients with active RA were treated with rituximab. Radiographs of hands and feet before and 1 year after therapy were assessed using the Sharp–van der Heijde score (SHS). Expression of bone destruction markers was evaluated by immunohistochemistry and immunofluorescence of synovial biopsies obtained before and 16 weeks after the initiation of treatment. Serum levels of osteoprotegerin, receptor activator of nuclear factor κB ligand (RANKL), osteocalcin and cross-linked N-telopeptides of type I collagen (NTx) were measured by ELISA before and 16 weeks post-treatment.ResultsAfter 1 year, the mean (SD) change in total SHS was 1.4 (10.0). Sixteen weeks after treatment there was a decrease of 99% in receptor activator of nuclear factor κB-positive osteoclast precursors (p=0.02) and a decrease of 37% (p=0.016) in RANKL expression in the synovium and a trend towards reduced synovial osteoprotegerin expression (25%, p=0.07). In serum, both osteoprotegerin (20%, p=0.001) and RANKL (40%, p<0.0001) levels were significantly reduced 16 weeks after treatment, but the osteoprotegerin/RANKL ratio increased (157%, p=0.006). A trend was found towards an increase of osteocalcin levels (p=0.053), while NTx concentrations did not change.ConclusionsRituximab treatment is associated with a decrease in synovial osteoclast precursors and RANKL expression and an increase in the osteoprotegerin/RANKL ratio in serum. These observations may partly explain the protective effect of rituximab on the progression of joint destruction in RA.


2009 ◽  
Vol 55 (5) ◽  
pp. 832-837 ◽  
Author(s):  
Michiko Hirata ◽  
Suguru Harada ◽  
Chiho Matsumoto ◽  
Morichika Takita ◽  
Chisato Miyaura ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaoke Feng ◽  
Chengyin Lv ◽  
Fang Wang ◽  
Ke Gan ◽  
Miaojia Zhang ◽  
...  

Receptor activator of nuclear factorκB ligand (RANKL) plays a crucial role in the bone erosion of rheumatoid arthritis (RA) by prompting osteoclastogenesis. Considering that 1,25(OH)2D3has been suggested as a potent inducer of RANKL expression, it should clarify whether vitamin D supplement could result in RANKL overexpression and thereby facilitate excessive osteoclastogenesis and bone resorption in RA. Here, we investigated modulatory effect of 1,25(OH)2D3on the expression of RANKL and its decoy receptor osteoprotegerin (OPG) in an inflammatory condition of human rheumatoid synoviocyte MH7A. MH7A cells were stimulated with IL1βand then treated with different concentrations of 1,25(OH)2D3for 48 h. A significantly elevated OPG/RANKL ratio and markedly decreased levels of IL-6 and TNFβmRNA expression in cells and IL-6 protein in supernatants were observed in IL1β-induced MH7A in the presence of 1,25(OH)2D3compared with those in the absence of it. Osteoclast formation was obviously decreased when RAW264.7 cells were treated with both 1,25(OH)2D3and IL1β. In summary, although it has a biological function to induce RANKL expression, 1,25(OH)2D3could upregulate OPG/RANKL ratio and mediate anti-inflammatory action in an inflammatory milieu of synoviocyte, contributing to the inhibition of inflammation-induced osteoclastogenesis in RA.


Sign in / Sign up

Export Citation Format

Share Document