scholarly journals The Role of Inflammation in Retinal Neurodegeneration and Degenerative Diseases

2021 ◽  
Vol 23 (1) ◽  
pp. 386
Author(s):  
Geetika Kaur ◽  
Nikhlesh K. Singh

Retinal neurodegeneration is predominantly reported as the apoptosis or impaired function of the photoreceptors. Retinal degeneration is a major causative factor of irreversible vision loss leading to blindness. In recent years, retinal degenerative diseases have been investigated and many genes and genetic defects have been elucidated by many of the causative factors. An enormous amount of research has been performed to determine the pathogenesis of retinal degenerative conditions and to formulate the treatment modalities that are the critical requirements in this current scenario. Encouraging results have been obtained using gene therapy. We provide a narrative review of the various studies performed to date on the role of inflammation in human retinal degenerative diseases such as age-related macular degeneration, inherited retinal dystrophies, retinitis pigmentosa, Stargardt macular dystrophy, and Leber congenital amaurosis. In addition, we have highlighted the pivotal role of various inflammatory mechanisms in the progress of retinal degeneration. This review also offers an assessment of various therapeutic approaches, including gene-therapies and stem-cell-based therapies, for degenerative retinal diseases.

2020 ◽  
Vol 21 (3) ◽  
pp. 704 ◽  
Author(s):  
Dmitry V. Chistyakov ◽  
Viktoriia E. Baksheeva ◽  
Veronika V. Tiulina ◽  
Sergei V. Goriainov ◽  
Nadezhda V. Azbukina ◽  
...  

Ocular inflammation contributes to the pathogenesis of blind-causing retinal degenerative diseases, such as age-related macular degeneration (AMD) or photic maculopathy. Here, we report on inflammatory mechanisms that are associated with retinal degeneration induced by bright visible light, which were revealed while using a rabbit model. Histologically and electrophysiologically noticeable degeneration of the retina is preceded and accompanied by oxidative stress and inflammation, as evidenced by granulocyte infiltration and edema in this tissue, as well as the upregulation of total protein, pro-inflammatory cytokines, and oxidative stress markers in aqueous humor (AH). Consistently, quantitative lipidomic studies of AH elucidated increase in the concentration of arachidonic (AA) and docosahexaenoic (DHA) acids and lyso-platelet activating factor (lyso-PAF), together with pronounced oxidative and inflammatory alterations in content of lipid mediators oxylipins. These alterations include long-term elevation of prostaglandins, which are synthesized from AA via cyclooxygenase-dependent pathways, as well as a short burst of linoleic acid derivatives that can be produced by both enzymatic and non-enzymatic free radical-dependent mechanisms. The upregulation of all oxylipins is inhibited by the premedication of the eyes while using mitochondria-targeted antioxidant SkQ1, whereas the accumulation of prostaglandins and lyso-PAF can be specifically suppressed by topical treatment with cyclooxygenase inhibitor Nepafenac. Interestingly, the most prominent antioxidant and anti-inflammatory benefits and overall retinal protective effects are achieved by simultaneous administrating of both drugs indicating their synergistic action. Taken together, these findings provide a rationale for using a combination of mitochondria-targeted antioxidant and cyclooxygenase inhibitor for the treatment of inflammatory components of retinal degenerative diseases.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Maria H. Madeira ◽  
Raquel Boia ◽  
Paulo F. Santos ◽  
António F. Ambrósio ◽  
Ana R. Santiago

Retinal degenerative diseases are major causes of vision loss and blindness worldwide and are characterized by chronic and progressive neuronal loss. One common feature of retinal degenerative diseases and brain neurodegenerative diseases is chronic neuroinflammation. There is growing evidence that retinal microglia, as in the brain, become activated in the course of retinal degenerative diseases, having a pivotal role in the initiation and propagation of the neurodegenerative process. A better understanding of the events elicited and mediated by retinal microglia will contribute to the clarification of disease etiology and might open new avenues for potential therapeutic interventions. This review aims at giving an overview of the roles of microglia-mediated neuroinflammation in major retinal degenerative diseases like glaucoma, age-related macular degeneration, and diabetic retinopathy.


2018 ◽  
Vol 19 (7) ◽  
pp. 2118 ◽  
Author(s):  
Andrea Maugeri ◽  
Martina Barchitta ◽  
Maria Mazzone ◽  
Francesco Giuliano ◽  
Guido Basile ◽  
...  

The role of epigenetic alterations in the pathogenesis of retinal degenerative diseases, including age-related macular degeneration (AMD), has been pending so far. Our study investigated the effect of oxidative stress and inflammation on DNA methyltransferases (DNMTs) and Sirtuin 1 (SIRT1) functions, as well as on long interspersed nuclear element-1 (LINE-1) methylation, in human retinal pigment epithelial (ARPE-19) cells. Therefore, we evaluated whether treatment with resveratrol may modulate DNMT and SIRT1 functions and restore changes in LINE-1 methylation. Cells were treated with 25 mU/mL glucose oxidase (GOx) or 10 µg/mL lipopolysaccharide (LPS) to mimic oxidative or inflammatory conditions, respectively. Oxidative stress decreased DNMT1, DNMT3a, DNMT3b, and SIRT1 expression (p-values < 0.05), as well as total DNMTs (−28.5%; p < 0.0001) and SIRT1 (−29.0%; p < 0.0001) activities. Similarly, inflammatory condition decreased DNMT1 and SIRT1 expression (p-values < 0.05), as well as total DNMTs (−14.9%; p = 0.007) and SIRT1 (−20.1%; p < 0.002) activities. Interestingly, GOx- and LPS-treated cells exhibited lower LINE-1 methylation compared to controls (p-values < 0.001). We also demonstrated that treatment with 10 μM resveratrol for 24 h counteracted the detrimental effect on DNMT and SIRT1 functions, and LINE-1 methylation, in cells under oxidative and inflammatory conditions. However, further studies should explore the perspectives of resveratrol as a suitable strategy for the prevention and/or treatment of retinal degenerative diseases.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Serge Camelo

Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly throughout the industrialized world. Its most prominent pathologic features are lesions involving the retinal pigment epithelium (RPE) the Bruch’s membrane, the degeneration of photoreceptors, and, in the most aggressive cases, choroidal neovascularization. Genetic associations between the risk of developing AMD and polymorphism within components of the complement system, as well as chemokine receptors expressed on microglial cells and macrophages, have linked retinal degeneration and choroidal neovascularization to innate immunity (inflammation). In addition to inflammation, players of the adaptive immunity including cytokines, chemokines, antibodies, and T cells have been detected in animal models of AMD and in patients suffering from this pathology. These observations suggest that adaptive immunity might play a role in different processes associated with AMD such as RPE atrophy, neovascularization, and retinal degeneration. To this date however, the exact roles (if any) of autoantibodies and T cells in AMD remain unknown. In this review we discuss the potential effects of adaptive immune responses in AMD pathogenesis.


Age-related macular degeneration (AMD) is a chronic and progressive disease of the central retina that causes vision loss in people over 50 years of age. With an understanding of the role of VEGF in AMD, intravitreal anti-VEGF agents are used as the most important therapeutic tool in the management of AMD. In this review we try to discuss intravitreal ranibizumab treatment and treatment regimens in wet (neovascular) age-related macular degeneration.


2021 ◽  
Vol 9 (3) ◽  
pp. 21-27
Author(s):  
N.V. Malachkova ◽  
Mohammad Mashhour Mohammad Masa’deh ◽  
Osama Mohammad Miteb Al-Jarrah ◽  
H.P. Liudkevych ◽  
D.S. Sukhan

Age-related macular degeneration mainly affects the elderly and is one of the most common causes of rapidly progressive vision loss. Over more than 150 years of research, the scientific community has gone from understanding the macroscopic picture of the lesion, presumable identification of drusen as the main morphological manifestation of nosology, to detailed classifications and determine the role of genetic determinants in the etiopathogenesis of the disease — high specificity, the possibility of preventive analysis, and much unclear in the field of genetic diagnosis of eye diseases determine the accurate attention of specialized research groups to the early diagnosis using genetic analysis. The review article was aimed to systematize the information about possible links in the pathogenesis of age-related macular degeneration and identify potential polymorphisms that can initiate and modulate the activity of these links. During the study, we could find out five main mechanisms of damage to the vascular membrane of the eye itself, which are affected by single nucleotide polymorphisms. The hig­hest affinity was shown by genetic variants of separate sites of CFH (rs1061170), HTRA1 (rs11200638), TNF (rs1800629), VEGFA (rs2010963). Literature data obtained from foreign and national sources indexed by Scopus, Web of Science databases, in particular for the last 5 years, pay special attention to these areas as potential predictors or modifiers of pathological processes involved in the process of macular degeneration. Despite the large number of studies examining the predisposition, pathogenesis, diagnosis, and treatment of age-related macular degeneration to stop the spread of vision loss, only a few issues are understood thoroughly. Considering the successful cases of application of biological and gene therapy for the management of such patients, we see new horizons in the detailed study of molecular interactions that underlie the pathology. The review confirms the active role of polymorphisms in one of the most relevant pathological processes of the human eye.


2017 ◽  
Vol 26 (9) ◽  
pp. 1538-1541 ◽  
Author(s):  
Vladimir Holan ◽  
Barbora Hermankova ◽  
Jan Kossl

Retinal degenerative diseases, which include age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy, and glaucoma, mostly affect the elderly population and are the most common cause of decreased quality of vision or even blindness. So far, there is no satisfactory treatment protocol to prevent, stop, or cure these disorders. A great hope and promise for patients suffering from retinal diseases is represented by stem cell–based therapy that could replace diseased or missing retinal cells and support regeneration. In this respect, mesenchymal stem cells (MSCs) that can be obtained from the particular patient and used as autologous cells have turned out to be a promising stem cell type for treatment. Here we show that MSCs can differentiate into cells expressing markers of retinal cells, inhibit production of pro-inflammatory cytokines by retinal tissue, and produce a number of growth and neuroprotective factors for retinal regeneration. All of these properties make MSCs a prospective cell type for cell-based therapy of age-related retinal degenerative diseases.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Francesco Parmeggiani ◽  
Mario R. Romano ◽  
Ciro Costagliola ◽  
Francesco Semeraro ◽  
Carlo Incorvaia ◽  
...  

Age-related macular degeneration (AMD) is a multifactorial disease that represents the most common cause of irreversible visual impairment among people over the age of 50 in Europe, the United States, and Australia, accounting for up to 50% of all cases of central blindness. Risk factors of AMD are heterogeneous, mainly including increasing age and different genetic predispositions, together with several environmental/epigenetic factors, that is, cigarette smoking, dietary habits, and phototoxic exposure. In the aging retina, free radicals and oxidized lipoproteins are considered to be major causes of tissue stress resulting in local triggers for parainflammation, a chronic status which contributes to initiation and/or progression of many human neurodegenerative diseases such as AMD. Experimental and clinical evidences strongly indicate the pathogenetic role of immunologic processes in AMD occurrence, consisting of production of inflammatory related molecules, recruitment of macrophages, complement activation, microglial activation and accumulation within those structures that compose an essential area of the retina known as macula lutea. This paper reviews some attractive aspects of the literature about the mechanisms of inflammation in AMD, especially focusing on those findings or arguments more directly translatable to improve the clinical management of patients with AMD and to prevent the severe vision loss caused by this disease.


2020 ◽  
Vol 21 (22) ◽  
pp. 8840
Author(s):  
Janusz Blasiak ◽  
Elzbieta Pawlowska ◽  
Anna Sobczuk ◽  
Joanna Szczepanska ◽  
Kai Kaarniranta

Aging induces several stress response pathways to counterbalance detrimental changes associated with this process. These pathways include nutrient signaling, proteostasis, mitochondrial quality control and DNA damage response. At the cellular level, these pathways are controlled by evolutionarily conserved signaling molecules, such as 5’AMP-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), insulin/insulin-like growth factor 1 (IGF-1) and sirtuins, including SIRT1. Peroxisome proliferation-activated receptor coactivator 1 alpha (PGC-1α), encoded by the PPARGC1A gene, playing an important role in antioxidant defense and mitochondrial biogenesis, may interact with these molecules influencing lifespan and general fitness. Perturbation in the aging stress response may lead to aging-related disorders, including age-related macular degeneration (AMD), the main reason for vision loss in the elderly. This is supported by studies showing an important role of disturbances in mitochondrial metabolism, DDR and autophagy in AMD pathogenesis. In addition, disturbed expression of PGC-1α was shown to associate with AMD. Therefore, the aging stress response may be critical for AMD pathogenesis, and further studies are needed to precisely determine mechanisms underlying its role in AMD. These studies can include research on retinal cells produced from pluripotent stem cells obtained from AMD donors with the mutations, either native or engineered, in the critical genes for the aging stress response, including AMPK, IGF1, MTOR, SIRT1 and PPARGC1A.


Sign in / Sign up

Export Citation Format

Share Document