scholarly journals Computational Design of Miniproteins as SARS-CoV-2 Therapeutic Inhibitors

2022 ◽  
Vol 23 (2) ◽  
pp. 838
Author(s):  
Bahaa Jawad ◽  
Puja Adhikari ◽  
Kun Cheng ◽  
Rudolf Podgornik ◽  
Wai-Yim Ching

A rational therapeutic strategy is urgently needed for combating SARS-CoV-2 infection. Viral infection initiates when the SARS-CoV-2 receptor-binding domain (RBD) binds to the ACE2 receptor, and thus, inhibiting RBD is a promising therapeutic for blocking viral entry. In this study, the structure of lead antiviral candidate binder (LCB1), which has three alpha-helices (H1, H2, and H3), is used as a template to design and simulate several miniprotein RBD inhibitors. LCB1 undergoes two modifications: structural modification by truncation of the H3 to reduce its size, followed by single and double amino acid substitutions to enhance its binding with RBD. We use molecular dynamics (MD) simulations supported by ab initio density functional theory (DFT) calculations. Complete binding profiles of all miniproteins with RBD have been determined. The MD investigations reveal that the H3 truncation results in a small inhibitor with a −1.5 kcal/mol tighter binding to RBD than original LCB1, while the best miniprotein with higher binding affinity involves D17R or E11V + D17R mutation. DFT calculations provide atomic-scale details on the role of hydrogen bonding and partial charge distribution in stabilizing the minibinder:RBD complex. This study provides insights into general principles for designing potential therapeutics for SARS-CoV-2.

2021 ◽  
Author(s):  
Xinpeng Zhao ◽  
Zhimin Zhou ◽  
hu luo ◽  
Yanfei Zhang ◽  
Wang Liu ◽  
...  

Combined experiments and density functional theory (DFT) calculations provided insights into the role of the environment-friendly γ-valerolactone (GVL) as a solvent in the hydrothermal conversion of glucose into lactic acid...


2017 ◽  
Vol 72 (12) ◽  
pp. 1131-1138 ◽  
Author(s):  
Mehdi Aramideh ◽  
Mahmoud Mirzaei ◽  
Ghadamali Khodarahmi ◽  
Oğuz Gülseren

AbstractCancer is one of the major problems for so many people around the world; therefore, dedicating efforts to explore efficient therapeutic methodologies is very important for researchers of life sciences. In this case, nanostructures are expected to be carriers of medicinal compounds for targeted drug design and delivery purposes. Within this work, the graphene (Gr)-functionalised derivatives of capecitabine (CAP), as a representative anticancer, have been studied based on density functional theory calculations. Two different sizes of Gr molecular models have been used for the functionalisation of CAP counterparts, CAP-Gr3 and CAP-Gr5, to explore the effects of Gr-functionalisation on the original properties of CAP. All singular and functionalised molecular models have been optimised and the molecular and atomic scale properties have been evaluated for the optimised structures. Higher formation favourability has been obtained for CAP-Gr5 in comparison with CAP-Gr3 and better structural stability has been obtained in the water-solvated system than the isolated gas-phase system for all models. The CAP-Gr5 model could play a better role of electron transferring in comparison with the CAP-Gr3 model. As a concluding remark, the molecular properties of CAP changed from singular to functionalised models whereas the atomic properties remained almost unchanged, which is expected for a carrier not to use significant perturbations to the original properties of the carried counterpart.


2020 ◽  
Vol 22 (9) ◽  
pp. 5249-5254 ◽  
Author(s):  
Yuting Liu ◽  
Xiaofang Su ◽  
Wei Guan ◽  
Likai Yan

In this work, the mechanism of water oxidation catalyzed by an Ru-based complex [Ru(L)]+ (L = 5,5-chelated 2-carboxy-phen, 2,2′;6′,2′′-terpyridine) was studied by density functional theory (DFT) calculations.


2017 ◽  
Vol 8 (2) ◽  
pp. 1631-1641 ◽  
Author(s):  
Chun-Teh Chen ◽  
Francisco J. Martin-Martinez ◽  
Gang Seob Jung ◽  
Markus J. Buehler

A set of computational methods that contains a brute-force algorithmic generation of chemical isomers, molecular dynamics (MD) simulations, and density functional theory (DFT) calculations is reported and applied to investigate nearly 3000 probable molecular structures of polydopamine (PDA) and eumelanin.


2005 ◽  
Vol 862 ◽  
Author(s):  
Mayur S. Valipa ◽  
Tamas Bakos ◽  
Eray S. Aydil ◽  
Dimitrios Maroudas

AbstractDevice-quality hydrogenated amorphous silicon (a-Si:H) thin films grown under conditions where the SiH3 radical is the dominant deposition precursor are remarkably smooth, as the SiH3 radical is very mobile and fills surface valleys during its diffusion on the a-Si:H surface. In this paper, we analyze atomic-scale mechanisms of SiH3 diffusion on a-Si:H surfaces based on molecular-dynamics simulations of SiH3 radical impingement on surfaces of a-Si:H films. The computed average activation barrier for radical diffusion on a-Si:H is 0.16 eV. This low barrier is due to the weak adsorption of the radical onto the a-Si:H surface and its migration predominantly through overcoordination defects; this is consistent with our density functional theory calculations on crystalline Si surfaces. The diffusing SiH3 radical incorporates preferentially into valleys on the a-Si:H surface when it transfers an H atom and forms a Si-Si backbond, even in the absence of dangling bonds.


2015 ◽  
Vol 13 (45) ◽  
pp. 10981-10985 ◽  
Author(s):  
Manjaly J. Ajitha ◽  
Kuo-Wei Huang

The mechanism of a chiral phosphoric acid catalyzed thiocarboxylysis of meso-epoxide was investigated by density functional theory (DFT) calculations (M06-2X).


2021 ◽  
Author(s):  
Ali Hassan ◽  
Asnake Sahele Haile ◽  
Theodore Tzedakis ◽  
Heine Anton Hansen ◽  
Piotr de Silva

<p>Graphite felt is a widely used electrode material for vanadium redox flow batteries. Electrode activation leads to the functionalization of the graphite surface with epoxy, OH, C=O, and COOH oxygenic groups and changes the carbon surface morphology and electronic</p> <p>structure; thus, improving the electrode’s electroactivity relative to the untreated graphite. In this study, we conduct density functional theory (DFT) calculations to evaluate functionalization’s</p> <p>role towards the positive half-cell reaction of the vanadium redox flow battery. The DFT calculations show that oxygenic groups improve the graphite felt’s affinity towards the VO<sup>2+</sup>/VO2<sup>+</sup> redox couple in the following order: C=O > COOH > OH > basal plane. Projected density of states (PDOS) calculations show that these groups increase the electrode’s sp<sup>3 </sup>hybridization in the same order. We conclude that the increase in the sp<sup>3</sup> hybridization is responsible for the improved electroactivity, while the oxygenic groups’ presence is responsible for this sp<sup>3</sup> increment. These insights can help in the better selection of activation processes and optimization of their parameters.</p>


2019 ◽  
Author(s):  
Carlos Ayestaran Latorre ◽  
James Ewen ◽  
Chiara Gattinoni ◽  
Daniele Dini

<div>Understanding the behaviour of surfactant molecules on iron oxide surfaces is important for many industrial applications. Molecular dynamics (MD) simulations of such systems have been limited by the absence of a force-feild (FF) which accurately describes the molecule-surface interactions. In this study, interaction energies from density functional theory (DFT) + U calculations with a van der Waals functional are used to parameterize a classical FF for MD simulations of amide surfactants on iron oxide surfaces. The Original FF, which was derived using mixing rules and surface Lennard-Jones (LJ) parameters developed for nonpolar molecules, were shown to signi cantly underestimate the adsorption energy and overestimate the equilibrium adsorption distance compared to DFT. Conversely, the Optimized FF showed excellent agreement with the interaction energies obtained from DFT calculations for a wide range of surface coverages and molecular conformations near to and adsorbed on a-Fe2O3(0001). This was facilitated through the use of a Morse potential for strong chemisorption interactions, modi fied LJ parameters for weaker physisorption interactions, and adjusted partial charges for the electrostatic interactions. The Original FF and Optimized FF were compared in classical nonequilibrium molecular dynamics (NEMD) simulations of amide molecules con fined between iron oxide surfaces. When the Optimized FF was employed, the amide molecules were pulled closer to the surface and the orientation of the headgroups was more similar to that observed in the DFT calculations compared to the Original FF. The Optimized FF proposed here facilitates classical MD simulations of amide-iron oxide interfaces in which the interactions are representative of accurate DFT calculations.</div>


2016 ◽  
Vol 3 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Sai V. C. Vummaleti ◽  
Giovanni Talarico ◽  
Steven P. Nolan ◽  
Luigi Cavallo ◽  
Albert Poater

A comparison between different M–C bonds (M = Cu(i), Ni(ii), Co(i), Rh(i) and Ir(i)) has been reported by using density functional theory (DFT) calculations to explore the role of the metal in the fixation or incorporation of CO2 into such complexes.


2017 ◽  
Vol 19 (11) ◽  
pp. 7476-7480 ◽  
Author(s):  
Tian Sheng ◽  
Jin-Yu Ye ◽  
Wen-Feng Lin ◽  
Shi-Gang Sun

In this work, we have studied methanol oxidation mechanisms on RuO2(100) by using density functional theory (DFT) calculations and ab initio molecular dynamics (MD) simulations with some explicit interfacial water molecules.


Sign in / Sign up

Export Citation Format

Share Document